On a Coefficient Conjecture for Bazilevič Functions


In this manuscript, a conjecture related to the estimate on the fifth coefficient of Bazilevič functions is settled for the range \(1\le \alpha \le \alpha ^*(\approx 2.049)\). However, for \(\alpha >\alpha ^*\), a non-sharp bound on the same is also derived. At the end of this manuscript, sharp upper bound on the functional \(|a_2a_3-a_4|\) is also obtained.

This is a preview of subscription content, log in to check access.


  1. 1.

    Carathéodory, C.: Über den variabilitätsbereich der fourier’schen konstanten von positiven harmonischen funktionen. Rend. Circ. Mat. Palermo 32, 193–217 (1911)

    Article  Google Scholar 

  2. 2.

    Grenander, U., Szegö, G.: Toeplitz Forms and Their Applications. California Monographs in Mathematical Sciences. University of California Press, Berkeley (1958)

    Google Scholar 

  3. 3.

    Krishna, D.V., Ramreddy, T.: Second Hankel determinant for the class of Bazilevič functions. Stud. Univ. Babeş-Bolyai Math. 60(3), 413–420 (2015)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Libera, R.J., Złotkiewicz, E.J.: Early coefficients of the inverse of a regular convex function. Proc. Amer. Math. Soc. 85(2), 225–230 (1982)

    MathSciNet  Article  Google Scholar 

  5. 5.

    MacGregor, T.H.: Functions whose derivative has a positive real part. Trans. Amer. Math. Soc. 104, 532–537 (1962)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Prokhorov, D.V., Szynal, J.: Inverse coefficients for \((\alpha,\beta )\)-convex functions. Ann. Univ. Mariae Curie-Skłodowska Sect. A 35, 125–143 (1981)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Ravichandran, V., Verma, S.: Bound for the fifth coefficient of certain starlike functions. C. R. Math. Acad. Sci. Paris 353(6), 505–510 (2015)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Sharma, P., Raina, R.K., Sokól, J.: On a set of close-to-convex functions. Stud. Sci. Math. Hung. 55(2), 190–202 (2018)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Sheil-Small, T.: On Bazilevič functions. Quart. J. Math. Oxford Ser. 23(2), 135–142 (1972)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Singh, R.: On Bazilevič functions. Proc. Amer. Math. Soc. 38, 261–271 (1973)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Sokół, Marjono, J., Thomas, D. K.: The fifth and sixth coefficients for Bazilevič functions \({\cal{B}}_1(\alpha )\). Mediterr. J. Math. 14(4), Art. ID. 158 (2017)

  12. 12.

    Thomas, D.K.: On starlike and close-to-convex univalent functions. J. Lond. Math. Soc. 42, 427–435 (1967)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Thomas, D.K.: On a subclass of Bazilevič functions. Int. J. Math. Math. Sci. 8(4), 779–783 (1985)

    Article  Google Scholar 

  14. 14.

    Thomas, D.K.: On the coefficients of Bazilevič functions with logarithmic growth. Indian J. Math. 57(3), 403–418 (2015)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Zamorski, J.: On Bazilevič schlicht functions. Ann. Polon. Math. 12, 83–90 (1962)

    MathSciNet  Article  Google Scholar 

Download references


The authors would like to express their gratitude to the referees for many valuable suggestions regarding the previous version of this paper. The first author was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2019R1I1A3A01050861).

Author information



Corresponding author

Correspondence to Virendra Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by V. Ravichandran.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cho, N.E., Kumar, V. On a Coefficient Conjecture for Bazilevič Functions. Bull. Malays. Math. Sci. Soc. 43, 3083–3097 (2020). https://doi.org/10.1007/s40840-019-00857-y

Download citation


  • Univalent function
  • Bazilevič function
  • Coefficient estimate
  • Coefficient conjecture

Mathematics Subject Classification

  • 30C45
  • 30C50