On the Distance Between Two Algebraic Numbers


In this paper we give an estimate for the difference between the moduli of two roots of a polynomial with integer coefficients in terms of its degree and Mahler measure. An application of this estimate implies a stronger version of a recent result of Gómez Ruiz and Luca. In passing, we prove an estimate for the distance between two algebraic numbers in terms of their degrees and Mahler measures. For possible applications all our results are given with explicit constants. They are stated without any extra conditions or unnecessary assumptions whenever possible.

This is a preview of subscription content, access via your institution.


  1. 1.

    Beresnevich, V., Bernik, V., Götze, F.: The distribution of close conjugate algebraic numbers. Compos. Math. 146, 1165–1179 (2010)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Bugeaud, Y., Dujella, A.: Root separation for irreducible integer polynomials. Bull. Lond. Math. Soc. 43, 1239–1244 (2011)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Bugeaud, Y., Dujella, A.: Root separation for reducible integer polynomials. Acta Arith. 162, 393–403 (2014)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Bugeaud, Y., Dujella, A., Pejković, T., Salvy, B.: Absolute real root separation. Am. Math. Mon. 124, 930–936 (2017)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Bugeaud, Y., Mignotte, M.: Polynomial root separation. Int. J. Number Theory 6, 587–602 (2010)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Dubickas, A.: An estimation of the difference between two zeros of a polynomial. N. Trends Probab. Stat. 2, 17–21 (1992)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Dubickas, A.: Three problems for polynomials of small measure. Acta Arith. 98, 279–292 (2001)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Dubickas, A.: Polynomial root separation in terms of the Remak height. Turkish J. Math. 37, 747–761 (2013)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Dubickas, A., Sha, M.: Counting and testing dominant polynomials. Exp. Math. 24, 312–325 (2015)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Dujella, A., Pejković, T.: Root separation for reducible monic quartics. Rend. Semin. Mat. Univ. Padova 126, 63–72 (2011)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Evertse, J.-H.: Distances between the conjugates of an algebraic number. Publ. Math. Debrecen 65, 323–340 (2004)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Flowe, R.P., Harris, G.A.: A note on generalized Vandermonde determinants. SIAM J. Matrix Anal. Appl. 14, 1146–1151 (1993)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Gómez Ruiz, C.A., Luca, F.: On the zero-multiplicity of a fifth-order linear recurrence. Int. J. Number Theory 15, 585–595 (2019)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Gourdon, X., Salvy, B.: Effective asymptotics of linear recurrences with rational coefficients. Discrete Math. 153, 145–163 (1996)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Güting, R.: Polynomials with multiple zeros. Mathematika 14, 181–196 (1967)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Herman, A., Hong, H., Tsigaridas, E.: Improving root separation bounds. J. Symb. Comput. 84, 25–56 (2018)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Mahler, K.: An inequality for the discriminant of a polynomial. Michigan Math. J. 11, 1153–1157 (1964)

    MathSciNet  Google Scholar 

  18. 18.

    Martin, P.A.: The Galois group of \(x^n-x^{n-1}-\dots -x-1\). J. Pure Appl. Algebra 190, 213–223 (2004)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Mignotte, M.: Approximation des nombres algébriques par des nombres algébriques de grand degré. Ann. Fac. Sci. Toulouse Math. 1(s), 165–170 (1979)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Mignotte, M.: Sur les conjugués des nombres de Pisot. C. R. Acad. Sci. Paris Sér. I Math. 298(2), 21 (1984)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Mignotte, M.: On the distance between the roots of a polynomial. Appl. Algebra Eng. Commun. Comput. 6, 327–332 (1995)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Miles Jr., E.P.: Generalized Fibonacci numbers and associated matrices. Am. Math. Mon. 67, 745–752 (1960)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Miller, M.D.: On generalized Fibonacci numbers. Am. Math. Mon. 78, 1108–1109 (1971)

    Article  Google Scholar 

  24. 24.

    Schmidt, W.M.: Diophantine Approximation, Lecture Notes in Mathematics, vol. 785. Berlin, Springer (1980)

    Google Scholar 

  25. 25.

    Schönhage, A.: Polynomial root separation examples. J. Symb. Comput. 41, 1080–1090 (2006)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Sha, M.: Effective results on the Skolem Problem for linear recurrence sequences. J. Number Theory 197, 228–249 (2019)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Smyth, C.J.: The conjugates of algebraic integers. Am. Math. Mon. 82, 86 (1975)

    Article  Google Scholar 

  28. 28.

    Waldschmidt, M.: Diophantine Approximation on Linear Algebraic Groups. Transcendence Properties of the Exponential Function in Several Variables, vol. 326. Springer, Berlin (2000)

    Book  Google Scholar 

Download references


I thank both referees for pointing out some small errors, misprints, bad notation, misspelled names, etc. This research was funded by the European Social Fund according to the activity ‘Improvement of researchers’ qualification by implementing world-class R&D projects’ of Measure No. 09.3.3-LMT-K-712-01-0037.

Author information



Corresponding author

Correspondence to Artūras Dubickas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Emrah Kilic.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dubickas, A. On the Distance Between Two Algebraic Numbers. Bull. Malays. Math. Sci. Soc. 43, 3049–3064 (2020). https://doi.org/10.1007/s40840-019-00855-0

Download citation


  • Polynomial root separation
  • Mahler measure
  • Confluent Vandermonde determinant

Mathematics Subject Classification

  • 11C08
  • 11R09
  • 12D10