Skip to main content
Log in

An Improved Method for Nonlinear Variable-Order Lévy–Feller Advection–Dispersion Equation

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

In this paper, numerical investigations of the variable-order fractional Lévy–Feller advection–dispersion equation with a nonlinear source term are presented. A family of time stepping schemes is proposed to solve this equation with space performed by the spectral Chebyshev–Legendre collocation method. The proposed methods reduce these types of partial differential equations to a system of nonlinear algebraic equations which is far easier to be solved. The numerical results of these methods have been compared with the results of other methods to show the good computationally performance, accuracy and efficiency of the presented schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Atangana, A., Cloot, A.H.: Stability and convergence of the space fractional variable-order Schrödinger equation. Adv. Differ. Equ. 2013, 80 (2013). https://doi.org/10.1016/j.jcp.2014.08.015

    Article  MATH  Google Scholar 

  2. Bhrawy, A.H., Zaky, M.A.: An improved collocation method for multi-dimensional space–time variable-order fractional Schrödinger equations. Appl. Numer. Math. 111, 197–218 (2017). https://doi.org/10.1007/s11071-014-1854-7

    Article  MathSciNet  MATH  Google Scholar 

  3. Razminia, A., Dizaji, A.F., Majd, V.J.: Solution existence for non-autonomous variable-order fractional differential equations. Math. Comput. Modell. 55, 1106–1117 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, C.M., Liu, F., Anh, V., Turner, I.: Numerical schemes with high spatial accuracy for a variable-order anomalous sub-diffusion equation. SIAM J. Sci. Comput. 32(4), 1740–1760 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, C.M., Liu, F., Anh, V., Turner, I.: Numerical simulation for the variable-order Galilei invariant advection diffusion equation with a nonlinear source term. Appl. Math. Comput. 217, 5729–5742 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Sun, H.G., Chen, W., Wei, H., Chen, Y.Q.: A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. Spec. Top. 193(1), 185–192 (2011)

    Article  Google Scholar 

  7. Sweilam, N.H., Khader, M.M., Almarwm, H.M.: Numerical studies for the variable order nonlinear fractional wave equation. FCAA 15, 4 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sweilam, N. H., Assiri, T. A.: Numerical simulations for the space–time variable order nonlinear fractional wave equation. J. Appl. Math. 2013, Article ID 586870 (2013)

  9. Sweliam, N.H., Nagy, A.M., Assiri, T.A., Ali, N.Y.: Numerical simulations for variable-order fractional nonlinear delay differential equations. JFCA 6(1), 71–82 (2015)

    MathSciNet  Google Scholar 

  10. Lin, R., Liu, F., Anh, V., Turner, I.: Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl. Math. Comput. 212, 435–445 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Samko, S.G., Ross, B.: Integration and differentiation to a variable fractional order. Integral Transform Special Funct. 1, 277–300 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, S.: Existence and uniqueness result of solutions to initial value problems of fractional differential equations of variable-order. J. Fract. Calc. Anal. 4(1), 82–98 (2013)

    Google Scholar 

  13. Zhang, S.: Existence result of solutions to differential equations of variable-order with nonlinear boundary value conditions. Commun. Nonlinear Sci. Numer. Simul. 18, 3289–3297 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhao, X., Sun, Z., Em, G.: Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput. Phys. 293, 184–200 (2014). https://doi.org/10.1016/j.jcp.2014.08.015

    Article  MathSciNet  MATH  Google Scholar 

  15. Lorenzo, C. F., Hartley, T. T.: Initialization, conceptualization, and application in the generalized fractional calculus. NASA/TP-1998-208415 (1998)

  16. Coimbra, C.F.M.: Mechanics with variable-order differential operators. Ann. Phys. 12, 692–703 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sheng, H., Sun, H.G., Coopmans, C., Chen, Y.Q., Bohannan, G.W.: A physical experimental study of variable-order fractional integrator and differentiator. Eur. Phys. J. Spec. Top. 193, 93–104 (2011)

    Article  Google Scholar 

  18. Sun, H.G., Chen, W., Chen, Y.Q.: Variable order fractional differential operators in anomalous diffusion modeling. Physica A 388, 4586–4592 (2009)

    Article  Google Scholar 

  19. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, New York (1993)

    MATH  Google Scholar 

  20. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  21. Chen, C., Liu, F., Burrage, K., Chen, Y.: Numerical methods of the variable-order Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivative. IMA J. Appl. Math. 78, 1–21 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Sweilam, N.H., Abou Hasan, M.M.: Numerical simulation for the variable-order fractional Schrödinger equation with the quantum Riesz–Feller derivative. Adv. Appl. Math. Mech. 9(4), 990–1011 (2017). https://doi.org/10.4208/aamm.2015.m1312

    Article  MathSciNet  Google Scholar 

  23. Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection–diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47(3), 1760–1781 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shen, S., Liu, F., Chen, J., Turner, I., Anh, V.: Numerical techniques for the variable order time fractional diffusion equation. Appl. Math. Comput. 218(22), 10861–10870 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Shen, S., Liu, F., Anh, V., Turner, I., Chen, J.: A characteristic difference method for the variable-order fractional advection–diffusion equation. J. Appl. Math. Comput. 116, 371–386 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kopriva, D.A.: Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  27. Shen, J., Tang, T., Wang, L.L.: Spectral Methods, Algorithms Analysis and Applications. Springer, Berlin (2011)

    MATH  Google Scholar 

  28. Trefethen, L.: Spectral Methods in MATLAB. Software, Environments, and Tools, vol. 10. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)

    Book  MATH  Google Scholar 

  29. Khader, M.M., Sweilam, N.H.: On the approximate solutions for system of fractional integro-differential equations using Chebyshev pseudo-spectral method. Appl. Math. Model. 37, 9819–9828 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Eslahchi, M.R., Dehghan, M., Parvizi, M.: Application of the collocation method for solving nonlinear fractional integro-differential equations. J. Comput. Appl. Math. 257, 105–128 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sweilam, N.H., Khader, M.M.: A Chebyshev pseudo-spectral method for solving fractional order integro-differential equations. ANZIAM 51, 464–475 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ma, X., Huang, C.: Spectral collocation method for linear fractional integro-differential equations. Appl. Math. Modell. 38, 1434–1448 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Bhrawy, A.H.: A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations. Numer. Algorithm (2015). https://doi.org/10.1007/s11075-015-0087-2

  34. Bhrawy, A.H.: A space–time collocation scheme for modified anomalous subdiffusion and nonlinear superdiffusion equations. Eur. Phys. J. Plus 131, 12 (2016). https://doi.org/10.1140/epjp/i2016-16012-0

    Article  Google Scholar 

  35. Khader, M.M., Sweilam, N.H., Mahdy, A.M.S.: An efficient numerical method for solving the fractional diffusion equation. J. Appl. Math. Bioinform. 1(2), 1–12 (2011)

    MATH  Google Scholar 

  36. Sweilam, N.H., Nagy, A.M., El-Sayed, A.A.: Second kind shifted Chebyshev polynomials for solving space fractional order diffusion equation. Chaos Solitons Fractals 73, 141–147 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sweilam, N.H., Nagy, A.M., El-Sayed, A.A.: On the numerical solution of space fractional order diffusion equation via shifted Chebyshev polynomials of the third kind. J. King Saud Univ. Sci. (2015). https://doi.org/10.1016/j.jksus.2015.05.002

    MATH  Google Scholar 

  38. Sweilam, N.H., Abou Hasan, M.M.: Numerical approximation of Lévy–Feller fractional diffusion equation via Chebyshev–Legendre collocation method. Eur. Phys. J. Plus 131, 251 (2016). https://doi.org/10.1140/epjp/i2016-16251-y

    Article  Google Scholar 

  39. Esmaeili, S., Garrappa, R.: A pseudo-spectral scheme for the approximate solution of a time-fractional diffusion equation. Int. J. Comput. Math. 92(5), 980–994 (2015). https://doi.org/10.1080/00207160.2014.915962

    Article  MathSciNet  MATH  Google Scholar 

  40. Zayernouri, M., Karniadakis, G.E.: Fractional spectral collocation methods for linear and nonlinear variable order FPDEs. J. Comput. Phys. 293, 312338 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Don, W.S., Gottlieb, D.: The Chebyshev–Legendre method: implementing Legendre methods on Chebyshev points. SINUM 31(6), 1519–1534 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  42. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion, a fractional dynamics approach. Phys. Rep. 339, 177 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ciesielski, M., Leszczynski, J.: Numerical solutions to boundary value problem for anomalous diffusion equation with Riesz–Feller fractional operator. JTAM 44(2), 393–403 (2006)

    Google Scholar 

  44. Hilfer, R.: Application of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  45. Liu, Q., Liu, F., Turner, I., Anh, V.: Approximation of the Lévy–Feller advection–dispersion process by random walk and finite difference method. J. Comput. Phys. 222, 57–70 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  46. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Roop, J.P.: Computational aspects of FEM approximation of fractional advection–dispersion equations on bounded domains in R2. J. Comput. Appl. Math. 193, 243–268 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. EI-Sayed, A.M.A., Behiry, S.H., Raslan, W.E.: Adomian’s decomposition method for solving an intermediate fractional advection–dispersion equation. Comput. Math. Appl. 59, 1759–1765 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Golbabai, A., Sayevand, K.: Analytical modelling of fractional advection–dispersion equation defined in a bounded space domain. Math. Comput. Modell. 53, 1708–1718 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Shen, S., Liu, F., Anh, V., Turner, I., Chen, J.: A novel numerical approximation for the space fractional advection–dispersion equation. IMA J. Appl. Math. 79, 431–444 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. Bhrawy, A.H., Zaky, M.A., Machado, J.T.: Efficient Legendre spectral tau algorithm for solving the two-sided space–time Caputo fractional advection–dispersion equation. J. Vib. Control (2015). https://doi.org/10.1177/1077546314566835

  52. Feng, L.B., Zhuang, P., Liu, F., Turner, I., Li, J.: High-order numerical methods for the Riesz space fractional advection–dispersion equations. Math. Appl. Comput. (2016). https://doi.org/10.1016/j.camwa.2016.01.015

  53. Huang, F., Liu, F.: The fundamental solution of the space–time fractional advection–dispersion equation. J. Appl. Math. Comput. 18(1–2), 339–350 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhang, H., Liu, F., Anh, V.: Numerical approximation of Lévy–Feller diffusion equation and its probability interpretation. J. Comput. Appl. Math. 206, 1098–1115 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  55. Ciesielski, M., Leszczynski, J.: Numerical treatment of an initial-boundary value problem for fractional partial differential equations. Signal Process. 86(10), 2503–3094 (2006)

    Article  MATH  Google Scholar 

  56. Tuan, N.H., Hai, D.N.D., Long, L.D., Nguyen, V.T., Kirane, M.: On a Riesz–Feller space fractional backward diffusion problem with a nonlinear source. J. Comput. Appl. Math. 312, 1–103126 (2016). https://doi.org/10.1016/j.cam.2016.01.003

    MathSciNet  MATH  Google Scholar 

  57. Herrmann, R.: Fractional Calculus, An Introduction For Physicists. World Scientific Publishing Co. Pte. Ltd, Singapore (2011)

    Book  MATH  Google Scholar 

  58. Al-Saqabi, B., Boyadjiev, L., Luchko, Y.: Comments on employing the Riesz–Feller derivative in the Schrödinger equation. EPJ ST 222, 1779–1794 (2013)

    Google Scholar 

  59. Feller, W.: On a generalization of Marcel Riesz’ potentials and the semi-groups generated by them, Meddelanden Lunds Universitets Matematiska Seminarium (Comm. Sém. Mathém. Université de Lund), Tome suppl. dédié à M. Riesz, Lund, 73 (1952)

  60. Bell, W.W.: Special Functions for Scientists and Engineers. Butler and Tanner Ltd, Frome (1968)

    MATH  Google Scholar 

  61. Szegő, G.: Orthogonal Polynomials, 4th edn. American Mathematical Society, Providence (1975)

    MATH  Google Scholar 

  62. Süli, E.: Numerical Solution of Ordinary Differential Equations. Mathematical Institute, University of Oxford (2014). https://people.maths.ox.ac.uk/suli/nsodes.pdf

Download references

Acknowledgements

The authors are indebted to the referees for constructive observations and remarks which have improved the paper. These have been fully taken in consideration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. H. Sweilam.

Additional information

Communicated by Ahmad Izani Md. Ismail.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sweilam, N.H., Hasan, M.M.A. An Improved Method for Nonlinear Variable-Order Lévy–Feller Advection–Dispersion Equation. Bull. Malays. Math. Sci. Soc. 42, 3021–3046 (2019). https://doi.org/10.1007/s40840-018-0644-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-018-0644-7

Keywords

Navigation