On a Rational Function in a Linear Relation

  • Ezzeddine Chafai


The behavior of the domain, the range, the kernel and the multi-valued part of a rational function in a linear relation is analyzed, respectively. We give some basic properties of such linear relations, and we prove that the rational form of the spectral mapping theorem holds in terms of ascent, essential ascent, descent and essential descent.


Linear relation Ascent Descent Spectral mapping theorem Rational function 

Mathematics Subject Classification

47A06 47A53 47A10 


  1. 1.
    Arens, R.: Operational calculus of linear relations. Pac. J. Math. 11, 9–23 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baskakov, A.G., Chernyshov, K.I.: Spectral analysis of linear relations and degenerate operator semigroups. Mat. Sb. 193(11), 3–42 (2002). (In Russian; translated in Sb. Math. 193:11--12 (2002), 1573–1610)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chafai, E., Mnif, M.: Spectral mapping theorem for ascent, essential ascent, descent and essential descent spectrum of linear relations. Acta Math. Sci. 34(B4), 1212–1224 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chafai, E., Mnif, M.: Descent and essential descent spectrum of linear relations. Extracta Math. 29(1–2), 117–139 (2014)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Chafai, E., Alvarez, T.: Ascent, essential ascent, descent and essential descent for a linear relation in a linear space. Filomat 31(3), 709–721 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Coddington, E.A.: Multivalued operators and boundary value problems. In: Analytic Theory of Differential Equations (Proceedings Conference, Western Michigan University, Kalamazoo, Michigan, 1970) Lecture Notes in Mathematics, vol. 183, pp. 2–8. Springer, Berlin (1971)Google Scholar
  7. 7.
    Cross, R.W.: Multivalued Linear Operators. Marcel Dekker, New York (1998)zbMATHGoogle Scholar
  8. 8.
    Cross, R.W., Favini, A., Yakukov, Y.: Perturbation results for multivalued linear operators. Prog. Nonlinear Differ. Equ. Appl. 80, 111–130 (2011)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Fakhfakh, F., Mnif, M.: Perturbtion theory of lower semi-Browder multivalued linear operators. Publ. Math. Debr. 78(3/4), 595–606 (2011)CrossRefzbMATHGoogle Scholar
  10. 10.
    Favini, A., Yagi, A.: Multivalued linear operators and degenerate evolution equations. Ann. Mat. Pura. Appl. (4) 163, 353–384 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gheorghe, D., Vasilescu, F.: Spectral theory for linear relations via linear operators. Pac. J. Math. 255(2), 349–372 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Grunenfelder, L., Omladic̆, M.: Ascent and descent for finite sequences of commuting endomorphisms. Pac. J. Math. 191, 95–121 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Harte, R.E.: Invertibility and Singularity for Bounded Linear Operators. Marcel Dekker Inc, New York (1988)zbMATHGoogle Scholar
  14. 14.
    Kascic Jr., M.J.: Polynomial in linear relations. Pac. J. Math. 24(2), 291–295 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ren, G., Shi, Y.: Defect indices and definiteness conditions for discrete linear Hamiltonian systems. Appl. Math. Comput. 218, 3414–3429 (2011)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Ren, G.: On the density of the minimal subspaces generated by discrete linear Hamiltonian systems. Appl. Math. Lett. 27, 1–5 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Riesz, F.: Uber lineare Functionalgleichungen. Acta Math. 41, 71–98 (1918)CrossRefGoogle Scholar
  18. 18.
    Sandovici, A., de Snoo, H., Winkler, H.: Ascent, descent, nullity, defect, and related notions for linear relations in linear spaces. Linear Algebra Appl. 423, 456–497 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Sandovici, A.: Some basic properties of polynomials in a linear relation in linear spaces. Oper. Theory Adv. Appl. 175, 231–240 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Sandovici, A., de Snoo, H.: An index formula for the product of linear relations. Linear Alg. Appl. 431, 2160–2171 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Taylor, A.E.: Theorems on ascent, descent, nullity and defect of linear operators. Math. Ann. 163, 18–49 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Taylor, A.E., Lay, D.C.: Introduction to Functional Analysis, 2nd edn. Wiley, New York (1980)zbMATHGoogle Scholar
  23. 23.
    Von Neumann, J.: Functorial Operators, II The Geometry of Orthogonal Spaces, in Annals of Mathematics Studies. Princeton University Press, Princeton, NJ (1950)Google Scholar

Copyright information

© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2018

Authors and Affiliations

  1. 1.Department of MathematicsPrince Sattam bin Abdulaziz UniversityAl kharjSaudi Arabia
  2. 2.Department of Mathematics, Faculty of sciences of SfaxUniversity of SfaxSfaxTunisia

Personalised recommendations