Skip to main content
Log in

Zero Point Problem of Accretive Operators in Banach Spaces

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

Splitting methods have recently received much attention due to the fact that many nonlinear problems arising in applied areas such as image recovery, signal processing and machine learning are mathematically modeled as a nonlinear operator equation and this operator is decomposed as the sum of two (possibly simpler) nonlinear operators. Most of the investigation on splitting methods is however carried out in the framework of Hilbert spaces. In this paper, we consider these methods in the setting of Banach spaces. We shall introduce a viscosity iterative forward–backward splitting method with errors to find zeros of the sum of two accretive operators in Banach spaces. We shall prove the strong convergence of the method under mild conditions. We also discuss applications of these methods to monotone variational inequalities, convex minimization problem and convexly constrained linear inverse problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20, 103–120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, G.H.G., Rockafellar, R.T.: Convergence rates in forward–backward splitting. SIAM J. Optim. 7, 421–444 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cholamjiak, P.: A generalized forward-backward splitting method for solving quasi inclusion problems in Banach spaces. Numer. Algorithms doi:10.1007/s11075-015-0030-6

  4. Cioranescu, I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Kluwer Academic Publishers, Dordrecht (1990)

    Book  MATH  Google Scholar 

  5. Combettes, P.L.: Iterative construction of the resolvent of a sum of maximal monotone operators. J. Convex Anal. 16, 727–748 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward–backward splitting. Multiscale Model. Simul. 4, 1168–1200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29, 403–419 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. He, S., Yang, C.: Solving the variational inequality problem defined on intersection of finite level sets. Abstr. Appl. Anal. 2013, 8 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Kamimura, S., Takahashi, W.: Approximating solutions of maximal monotone operators in Hilbert spaces. J. Approx. Theory 106, 226–240 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. López, G., Martín-Márquez, V., Wang, F., Xu, H.K.: Forward–Backward splitting methods for accretive operators in Banach spaces. Abstr. Appl. Anal. 2012, 25 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Maingǐe, P.E.: Approximation method for common fixed points of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 325, 469–479 (2007)

    Article  MathSciNet  Google Scholar 

  13. Marino, G., Xu, H.K.: Convergence of generalized proximal point algorithm. Commun. Pure Appl. Anal. 3, 791–808 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72, 383–390 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. Reich, S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75, 287–292 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75–88 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  18. Saewan, S., Kumam, P., Cho, Y.J.: Strong convergence for maximal monotone operators, relatively quasi- nonexpansive mappings, variational inequalities and equilibrium problems. J. Glob. Optim. 57, 1299–1318 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sra, S., Nowozin, S., Wright, S.J. (eds): Optimization for Machine Learning. Neural Information Processing series. The MIT Press, Cambridge, MA (2011)

  20. Takahashi, W., Wong, N.C., Yao, J.C.: Two generalized strong convergence theorems of Halpern’s type in Hilbert spaces and applications. Taiwan. J. Math. 16, 1151–1172 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tseng, P.: A modified forward–backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431–446 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, F., Cui, H.: On the contraction-proximal point algorithms with multi-parameters. J. Glob. Optim. 54, 485–491 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yao, Y., Liou, Y.C., Yao, J.C.: Split common fixed point problem for two quasi-pseudocontractive operators and its algorithm construction. Fixed Point Theory Appl. 2015, 127, 19 (2015). doi:10.1186/s13663-015-0376-4

  24. Yao, Y., Liou, Y.C.,Yao, J.C.: Convergence theorem for equilibrium problems and fixed point problems of infinite family of nonexpansive mappings. Fixed Point Theory Appl. 2007, Article ID 64363, 12 (2007). doi:10.1155/2007/64363

  25. Yao, Y., Chen, R., Yao, J.C.: Strong convergence and certain control conditions for modified Mann iteration. Nonlinear Anal. 68, 1687–1693 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yao, Y., Liou, Y.C., Yao, J.C.: Finding the minimum norm common element of maximal monotone operators and nonexpansive mappings without involving projection. J. Nonlinear Convex Anal. 16, 835–854 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Yao, Y., Noor, M.A.: On convergence criteria of generalized proximal point algorithms. J. Comput. Appl. Math. 217, 46–55 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhou, H.Y.: Iterative Methods of Fixed Points and Zeros with Applications. National Defense Industry Press, Beijing (2016)

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of China Medical University, Taichung, Taiwan, and the grand from Research Center for Nonlinear Analysis and Optimization, Kaohsiung Medical University, Kaohsiung, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Feng Wen.

Additional information

Communicated by Mohammad Sal Moslehian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, SS., Wen, CF. & Yao, JC. Zero Point Problem of Accretive Operators in Banach Spaces. Bull. Malays. Math. Sci. Soc. 42, 105–118 (2019). https://doi.org/10.1007/s40840-017-0470-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-017-0470-3

Keywords

Mathematics Subject Classification

Navigation