Skip to main content
Log in

Abstract

Roughly speaking, the Weyl law describes the asymptotic distribution of eigenvalues of the Laplacian that can be attached to different objects and can be analyzed in different settings. The form of the remainder term in the Weyl law is very significant in applications, and a power-saving exponent in the remainder term is appreciated. We are dealing with Laplacian defined on compact metric graph with general self-adjoint boundary conditions. The main purpose of this paper is to present application of the special form of the Tauberian theorem for the Laplace transform to the suitably transformed trace formula in the above-mentioned quantum graphs setting. The key feature of our method is that it produces a power-saving form of the reminder term and hence represents improvement in classical methods, which may be applied in other settings as well. The obtained form of the Weyl law is with the power saving of 1 / 3 in the remainder term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bolte, J., Endres, S.: The trace formula for quantum graphs with general self adjoint boundary conditions. Ann. Henri Poincare 10, 189–223 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Geisinger, L.: A short proof of Weyl’s law for fractional differential operators. J. Math. Phys. 55, 7 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gutzwiller, M.C.: Periodic orbits and classical quantization conditions. J. Math. Phys. 12, 343–358 (1971)

    Article  Google Scholar 

  4. Ivrii, V.: 100 years of Weyl’s law. arXiv:1608.03963v1, Bull. Math. Sci. (2016)

  5. Khosravi, M., Petridis, Y.N.: The remainder in Weyl’s law for \(n\)-dimensional Heisenberg manifolds. Proc. Am. Math. Soc. 133, 3561–3571 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Korevaar, J.: A century of complex Tauberian theory. Bull. AMS 39(4), 475–531 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Korevaar, J.: Tauberian Theory. In: Berger, M., Coates, J., Varadhan S.R.S. (eds.) A Century of Developments. Grundlehren der Matematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 329, Springer, Berlin (2004)

  8. Kostrykin, V., Potthof, J., Schrader, R.: Heat kernels on metric graphs and a trace formula. In: Germinet, F., Hislop, P.D. (eds.) Adventure of Mathematical Physics, pp. 175–198. Contemp. Math. 447, Amer. Math. Soc., Providence (2007)

    Chapter  Google Scholar 

  9. Kostrykin, V., Schrader, R.: Laplacians on metric graphs: eigenvalues, resolvents and semigroups. In: Berkolaiko, G., Carlson, R., Fulling, S.A., Kuchment, P. (eds.) Quantum Graphs and Their Applications, pp. 201–225. Contemp. Math. 415, Amer. Math. Soc., Providence (2006)

    Chapter  Google Scholar 

  10. Kuchment, P.: Quantum graphs I. Some basic structures. Waves Random Media 14, 107–128 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, X.: A weighted Weyl law for the modular surface. Int. J. Number Theory 7, 241–248 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Matassa, M.: An analogue of Weyl’s law for quantized irreducible generalized flag manifolds. J. Math. Phys. 56, 091704 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Müller, W.: Weyl’s law for the cuspidal spectrum of \(SL_n\). Ann. Math. 2(165), 275–333 (2007)

    Article  MATH  Google Scholar 

  14. Petridis, Y., Toth, J.A.: The remainder in Weyl’s law for random two-dimensional flat tori. Geom. Funct. Anal. 12, 756–775 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Paoletti, R.: On the Weyl law for Toeplitz operators. Asymptot. Anal. 63, 85–99 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Roth, J.-P.: Spectre du Laplacien sur un graphe. C.R. Acad. Sci. Paris Sér. I Math. 296, 793–795 (1983)

    MathSciNet  Google Scholar 

  17. Smajlović, L., Šćeta, L.: On a Tauberian theorem with the remainder and its application to the Weyl law. J. Math. Anal. Appl. 401, 317–335 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Smajlović, L., Šćeta, L.: On the remainder term in the Weyl law for cofinite Kleinian groups with finite dimensional unitary representation. Arch. Math. 102, 117–126 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Weyl, H.: Das asymptotische Verteilungsgesetz der Eigenwarte linearer partieller Defferentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung). Math. Ann. 71, 441–479 (1912)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhai, W.: On the error term in Weyl’s law for Heisenberg manifolds. Acta Arith. 134, 219–257 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Useful and enlightening discussions with professor Lejla Smajlovic are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Almasa Odžak.

Additional information

Communicated by Emrah Kilic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odžak, A., Šćeta, L. On the Weyl Law for Quantum Graphs. Bull. Malays. Math. Sci. Soc. 42, 119–131 (2019). https://doi.org/10.1007/s40840-017-0469-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-017-0469-9

Keywords

Mathematics Subject Classification

Navigation