Lithium Extraction from Molten LiOH by Using a Liquid Tin Cathode

Abstract

Lithium is a critical metal with a wide range of applications in energy, electronics, and chemical industry. Currently, the industrial method for Li metal extraction relies on electrolysis of molten LiCl and suffers from various safety, cost, and environmental issues. In this work, we report electrochemical extraction of Li from molten LiOH by using a liquid tin (Sn) cathode. The use of liquid Sn cathode offers various advantages, such as lowering the dissociation potential of LiOH and easy collection of the metallic Li. Electrochemical and materials characterization results reveal that a plunge of electrolysis current occurs in the electrolyser without using a porous alumina membrane, due to the formation of a Li2O passivation layer at the cathode/electrolyte interface. In the electrolyser with a porous alumina membrane, continuous electrolysis has been achieved, and the side surface of the liquid Sn is identified to be the effective interface for Li electrodeposition. In addition, we demonstrate the use of the Li–Sn product for the synthesis of acetylene (C2H2), a widely used fuel and chemical feedstock.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Kipouros GJ, Sadoway DR (1998) Toward new technologies for the production of lithium. JOM 50(5):24–26

    CAS  Article  Google Scholar 

  2. 2.

    Sidhar H, Martinez NY, Mishra RS, Silvanus J (2016) Friction stir welding of Al–Mg–Li 1424 alloy. Mater Des 106:146–152

    CAS  Article  Google Scholar 

  3. 3.

    Fütterer MA, Aiello G, Barbier F, Giancarli L, Poitevin Y, Sardain P, Szczepanski J, Li Puma A, Ruvutuso G, Vella G (2000) On the use of tin–lithium alloys as breeder material for blankets of fusion power plants. J Nucl Mater 283–287:1375–1379

    Article  Google Scholar 

  4. 4.

    de Castro A, Moynihan C, Stemmley S, Szott M, Andruczyk D, Ruzic DN (2020) Exploration of Sn70Li30 alloy as possible material for flowing liquid metal plasma facing components. Nucl Mater Energy 25:100829

    Article  Google Scholar 

  5. 5.

    Holroyd RJ, Mitchell JTD (1984) Liquid lithium as a coolant for Tokamak fusion reactors. Nucl Eng Des Fusion 1(1):17–38

    CAS  Article  Google Scholar 

  6. 6.

    Merwin A, Williamson MA, Willit JL, Chidambaram D (2017) Review—Metallic lithium and the reduction of actinide oxides. J Electrochem Soc 164(8):H5236–H5246

    CAS  Article  Google Scholar 

  7. 7.

    Cohen T, Bhupathy M (1989) Organoalkali compounds by radical anion induced reductive metalation of phenyl thioethers. Acc Chem Res 22(4):152–161

    CAS  Article  Google Scholar 

  8. 8.

    Jain A, Miyaoka H, Ichikawa T (2016) Destabilization of lithium hydride by the substitution of group 14 elements: a review. Int J Hydrog Energy 41(14):5969–5978

    CAS  Article  Google Scholar 

  9. 9.

    McEnaney JM, Singh AR, Schwalbe JA, Kibsgaard J, Lin JC, Cargnello M, Jaramillo TF, Nørskov JK (2017) Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure. Energy Environ Sci 10(7):1621–1630

    CAS  Article  Google Scholar 

  10. 10.

    Yamaguchi S, Ichikawa T, Wang Y, Nakagawa Y, Isobe S, Kojima Y, Miyaoka H (2017) Nitrogen dissociation via reaction with lithium alloys. ACS Omega 2(3):1081–1088

    CAS  Article  Google Scholar 

  11. 11.

    Martin G, Rentsch L, Höck M, Bertau M (2017) Lithium market research—global supply, future demand and price development. Energy Storage Mater 6:171–179

    Article  Google Scholar 

  12. 12.

    Obrovac MN, Chevrier VL (2014) Alloy negative electrodes for Li-ion batteries. Chem Rev 114(23):11444–11502

    CAS  Article  Google Scholar 

  13. 13.

    Wang K, Jiang K, Chung B, Ouchi T, Burke PJ, Boysen DA, Bradwell DJ, Kim H, Muecke U, Sadoway DR (2014) Lithium–antimony–lead liquid metal battery for grid-level energy storage. Nature 514(7522):348–350

    CAS  Article  Google Scholar 

  14. 14.

    Peiró LT, Méndez GV, Ayres RU (2013) Lithium: sources, production, uses, and recovery outlook. JOM 65(8):986–996

    Article  CAS  Google Scholar 

  15. 15.

    Lang J, Jin Y, Liu K, Long Y, Zhang H, Qi L, Wu H, Cui Y (2020) High-purity electrolytic lithium obtained from low-purity sources using solid electrolyte. Nat Sustain 3:386–390

  16. 16.

    Zhang W-J (2011) Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries. J Power Sources 196(3):877–885

    CAS  Article  Google Scholar 

  17. 17.

    Zhang X, Han A, Yang Y (2020) Review on the production of high-purity lithium metal. J Mater Chem A 8:22455–22466

  18. 18.

    Lantelme F, Kaplan B, Groult H, Devilliers D (1999) Mechanism for elemental carbon formation in molecular ionic liquids. J Mol Liq 83(1):255–269

    CAS  Article  Google Scholar 

  19. 19.

    Kaplan B, Groult H, Barhoun A, Lantelme F, Nakajima T, Gupta V, Komaba S, Kumagai N (2002) Synthesis and structural characterization of carbon powder by electrolytic reduction of molten Li2CO3–Na2CO3–K2CO3. J Electrochem Soc 149(5):D72

    CAS  Article  Google Scholar 

  20. 20.

    Ijije HV, Lawrence RC, Siambun NJ, Jeong SM, Jewell DA, Hu D, Chen GZ (2014) Electro-deposition and re-oxidation of carbon in carbonate-containing molten salts. Faraday Discuss 172:105–116

    CAS  Article  Google Scholar 

  21. 21.

    Yin H, Mao X, Tang D, Xiao W, Xing L, Zhu H, Wang D, Sadoway DR (2013) Capture and electrochemical conversion of CO2 to value-added carbon and oxygen by molten salt electrolysis. Energy Environ Sci 6(5):1538–1545

    CAS  Article  Google Scholar 

  22. 22.

    Zhang B, Xie H, Lu B, Chen X, Xing P, Qu J, Song Q, Yin H (2019) A green electrochemical process to recover Co and Li from spent LiCoO2-based batteries in molten salts. ACS Sustain Chem Eng 7(15):13391–13399

    CAS  Article  Google Scholar 

  23. 23.

    DeYong DH (1991) Production of lithium by direct electrolysis of lithium carbonate. US4988417

  24. 24.

    Kruesi WH, Fray DJ (1993) The electrowinning of lithium from chloride-carbonate melts. Metall Trans B 24(4):605–615

    Article  Google Scholar 

  25. 25.

    Olivetti EA, Ceder G, Gaustad GG, Fu X (2017) Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule 1(2):229–243

    Article  Google Scholar 

  26. 26.

    Laude T, Kobayashi T, Sato Y (2010) Electrolysis of LiOH for hydrogen supply. Int J Hydrog Energy 35(2):585–588

    CAS  Article  Google Scholar 

  27. 27.

    Takeda O, Li M, Toma T, Sugiyama K, Hoshi M, Sato Y (2014) Electrowinning of lithium from LiOH in molten chloride. J Electrochem Soc 161(14):D820–D823

    CAS  Article  Google Scholar 

  28. 28.

    McEnaney JM, Rohr BA, Nielander AC, Singh AR, King LA, Nørskov JK, Jaramillo TF (2020) A cyclic electrochemical strategy to produce acetylene from CO2, CH4, or alternative carbon sources. Sustain Energy Fuels 4:2752–2759

  29. 29.

    Gibilaro M, Bolmont S, Massot L, Latapie L, Chamelot P (2014) On the use of liquid metals as cathode in molten fluorides. J Electroanal Chem 726:84–90

    CAS  Article  Google Scholar 

  30. 30.

    Jiao H, Wang J, Zhang L, Zhang K, Jiao S (2015) Electrochemically depositing titanium(iii) ions at liquid tin in a NaCl–KCl melt. RSC Adv 5(76):62235–62240

    CAS  Article  Google Scholar 

  31. 31.

    Guan X, Pal UB, Jiang Y, Su S (2016) Clean metals production by solid oxide membrane electrolysis process. J Sustain Metall 2(2):152–166

    Article  Google Scholar 

  32. 32.

    Han W, Li W, Li M, Yang Z, Chen L, Zhang Y, Meng Y, Li Q, Sun Y (2020) Electrochemical extraction of metallic Y using solid and liquid double cathodes. Electrochim Acta 346:136233

    CAS  Article  Google Scholar 

  33. 33.

    Lichtenstein T, Nigl TP, Smith ND, Kim H (2018) Electrochemical deposition of alkaline-earth elements (Sr and Ba) from LiCl-KCl-SrCl2-BaCl2 solution using a liquid bismuth electrode. Electrochim Acta 281:810–815

    CAS  Article  Google Scholar 

  34. 34.

    Nigl TP, Lichtenstein T, Kong Y, Kim H (2020) Electrochemical separation of alkaline-Earth elements from molten salts using liquid metal electrodes. ACS Sustain Chem Eng 8(39):14818–14824

    CAS  Article  Google Scholar 

  35. 35.

    Jiang Y, Xu J, Guan X, Pal UB, Basu SN (2013) Production of silicon by solid oxide membrane-based electrolysis process. MRS Proc 1493:231–235

    Article  CAS  Google Scholar 

  36. 36.

    Xu J, Lo B, Jiang Y, Pal U, Basu S (2014) Stability of yttria stabilized zirconia in molten oxy-fluorite flux for the production of silicon with the solid oxide membrane process. J Eur Ceram Soc 34(15):3887–3896

    CAS  Article  Google Scholar 

  37. 37.

    Lee T-H, Okabe TH, Lee J-Y, Kim YM, Kang J (2020) Molten salt electrolysis of magnesium oxide using a liquid-metal cathode for the production of magnesium metal. Metall Mater Trans B 51(6):2993–3006

    Article  CAS  Google Scholar 

  38. 38.

    Morachevskii AG (2015) Thermodynamic properties and electrochemical studies of lithium-tin alloys. Russ J Appl Chem 88(7):1087–1105

    CAS  Article  Google Scholar 

  39. 39.

    Kiat JM, Boemare G, Rieu B, Aymes D (1998) Structural evolution of LiOH: evidence of a solid–solid transformation toward Li2O close to the melting temperature. Solid State Commun 108(4):241–245

    CAS  Article  Google Scholar 

  40. 40.

    Xu Q, Schwandt C, Fray DJ (2004) Electrochemical investigation of lithium and tin reduction at a graphite cathode in molten chlorides. J Electroanal Chem 562(1):15–21

    CAS  Article  Google Scholar 

  41. 41.

    Xu Q, Schwandt C, Chen GZ, Fray DJ (2002) Electrochemical investigation of lithium intercalation into graphite from molten lithium chloride. J Electroanal Chem 530(1):16–22

    CAS  Article  Google Scholar 

  42. 42.

    Wen CJ, Huggins RA (1981) Thermodynamic study of the lithium-tin system. J Electrochem Soc 128(6):1181

    CAS  Article  Google Scholar 

  43. 43.

    Boukamp BA, Lesh GC, Huggins RA (1981) All-solid lithium electrodes with mixed-conductor matrix. J Electrochem Soc 128(4):725

    CAS  Article  Google Scholar 

  44. 44.

    Jin S, Ye Y, Niu Y, Xu Y, Jin H, Wang J, Sun Z, Cao A, Wu X, Luo Y, Ji H, Wan L-J (2020) Solid–solution-based metal alloy phase for highly reversible lithium metal anode. J Am Chem Soc 142(19):8818–8826

    Article  CAS  Google Scholar 

  45. 45.

    Genser O, Hafner J (2001) Structure and bonding in crystalline and molten Li–Sn alloys: a first-principles density-functional study. Phys Rev B 63(14):144204

    Article  CAS  Google Scholar 

  46. 46.

    Lide DR, Haynes WM (2010) CRC handbook of chemistry and physics. CRC Press, Boca Raton, FL

    Google Scholar 

  47. 47.

    Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA (2013) Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater 1(1):011002

    Article  CAS  Google Scholar 

  48. 48.

    Kovrov VA, Mullabaev AR, Shishkin VY, Zaikov YP (2018) Solubility of Li2O in an LiCl–KCl melt. Russ Metall 2018:169

    Article  Google Scholar 

  49. 49.

    Stowe AC, Smyrl N (2012) Raman spectroscopy of lithium hydride corrosion: selection of appropriate excitation wavelength to minimize fluorescence. Vib Spectrosc 60:133–136

    CAS  Article  Google Scholar 

  50. 50.

    Gorelik VS, Bi D, Voinov YP, Vodchits AI, Gorshunov BP, Yurasov NI, Yurasova II (2017) Raman spectra of lithium compounds. J Phys Conf Ser 918:012035

    Article  CAS  Google Scholar 

  51. 51.

    Wan M, Kang S, Wang L, Lee H-W, Zheng GW, Cui Y, Sun Y (2020) Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. Nat Commun 11(1):829

    CAS  Article  Google Scholar 

  52. 52.

    Ishiyama S, Baba Y, Fujii R, Nakamura M, Imahori Y (2012) Synthesis of lithium nitride for neutron production target of BNCT by in situ lithium deposition and ion implantation. Nucl Instrum Methods Phys Res Sect B 293:42–47

    CAS  Article  Google Scholar 

  53. 53.

    Montella C, Diard J-P (2017) Cyclic voltammetry corrupted by Ohmic Drop, Wolfram Demonstrations Project

  54. 54.

    Tian N, Gao Y, Li Y, Wang Z, Song X, Chen L (2016) Li2C2, a high-capacity cathode material for lithium ion batteries. Angew Chem Int Ed 55(2):644–648

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This material was based upon work supported by the startup funding from ShanghaiTech University. The authors would like to thank Qinghai Yang for the technical assistance in SEM characterization. Part of the work was performed at the Analytical Instrumentation Center (No. SPST-AIC10112914) and the Center for High-resolution Electron Microscopy (CħEM, No. EM02161943) at ShanghaiTech University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaofei Guan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The contributing editor for this article was Hojong Kim.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 437 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tang, Z., Guan, X. Lithium Extraction from Molten LiOH by Using a Liquid Tin Cathode. J. Sustain. Metall. (2021). https://doi.org/10.1007/s40831-021-00339-1

Download citation

Keywords

  • Lithium extraction
  • Liquid metal electrode
  • Molten salt electrolysis
  • Electrochemical extraction
  • Acetylene synthesis