Journal of Sustainable Metallurgy

, Volume 5, Issue 2, pp 219–229 | Cite as

Magnesiothermic Reduction from Titanium Dioxide to Produce Titanium Powder

  • Rafael BolivarEmail author
  • Bernd Friedrich
Research Article


Titanium metallic powder (2.98 wt% O) of irregular and semi-spherical particles sizes ranging between 0.5 and 3.5 µm was obtained by magnesiothermic reduction of TiO2 and a leaching purification process. Magnesiothermic reduction experiments were carried out to evaluate the influence of temperature and molar ratio of Mg/TiO2. A rotary tube reactor in three different configurations was used to promote solid–liquid and solid–gas model reaction. The best configuration resulted when solid–gas model reaction was promoted. Different mixtures of acid as 6M HCl, 3M HCl, 0.55M HCl plus a mixture of 8 HCl% + 3 HNO3% were used to evaluate the purification of solid titanium metal by dissolution of Mg, MgO, Ni, Fe, magnesium titanates, and titanium oxides.


Magnesiothermic reduction Titanium powder production Titanium dioxide reduction 



The research was financially supported by the DAAD-scholarship Ph.D. Program, Universidad de Pamplona-Ph.D. Program, and by IME-RWTH.

Compliance with Ethical Standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Prasad S, Ehrensberger M, Gibson MP et al (2015) Biomaterial properties of titanium in dentistry. J Oral Biosci 57:192–199CrossRefGoogle Scholar
  2. 2.
    Yang Y, Zhang C, Dai Y, Luo J (2017) Tribological properties of titanium alloys under lubrication of SEE oil and aqueous solutions. Tribol Int 109:40–47. CrossRefGoogle Scholar
  3. 3.
    Hurless BE, Froes FH (2002) Lowering the cost of titanium. AMPTIAC Q. 6:3–9Google Scholar
  4. 4.
    Norgate TE, Wellwood G (2006) The potential applications for titanium metal powder and their life cycle impacts. JOM 58:58–63. CrossRefGoogle Scholar
  5. 5.
    Kraft EH (2004) Summary of emerging titanium cost reduction technologies. Report by EHK Technology Vancouver, WA Study for US DofE and ORNL/Subcontract 4000023694Google Scholar
  6. 6.
    Barnes J, Kingsbury A, Bono E (2016) Does "low cost" titanium powder yield low cost titanium parts? In: PowderMet 2016 international conference on powder metallurgy. BostonGoogle Scholar
  7. 7.
    Faller K, Froes FH (2001) The use of titanium in family automobiles: current trends. JOM 53:27–28. CrossRefGoogle Scholar
  8. 8.
    Ashraf Imam M, Froes FHS (2010) Low cost titanium and developing applications. JOM 62:17–20. CrossRefGoogle Scholar
  9. 9.
    Froes FHS, Gungor MN, Ashraf Imam M (2007) Cost-affordable titanium: The component fabrication perspective. JOM 59:28–31. CrossRefGoogle Scholar
  10. 10.
    German R (2009) Titanium powder injection moulding: a review of the current status of materials, processing, properties and applications. Powder Inject Mould Int 3:21–37. Google Scholar
  11. 11.
    Dutta B, Froes F (2015) The additive manufacturing (AM) of titanium alloys. In: Advanced materials research, pp 447–468Google Scholar
  12. 12.
    Froes FHS (2012) Titanium powder metallurgy: a review—part 1. Adv Mater Process. 170:16–22Google Scholar
  13. 13.
    Bolzoni L, Ruiz-Navas EM, Neubauer E, Gordo E (2012) Inductive hot-pressing of titanium and titanium alloy powders. Mater Chem Phys 131:672–679. CrossRefGoogle Scholar
  14. 14.
    Cui C, Hu B, Zhao L, Liu S (2011) Titanium alloy production technology, market prospects and industry development. Mater Des - MATER Des 32:1684–1691. Google Scholar
  15. 15.
    Vlad AIO (2008) Innovative powder metallurgy process for producing low cost titanium alloy component. In: Titanium 2008, Las VegasGoogle Scholar
  16. 16.
    Capus J (2017) Titanium powder developments for AM: a round-up. Met Powder Rep 72:384–388. CrossRefGoogle Scholar
  17. 17.
    Neotiss AB (2017) Global trends in industrial market. In: Titanium Europe 20, AmsterdamGoogle Scholar
  18. 18.
    Cain KJ (2016) Industrial titanium demand forecast 2016. In: Titanium USA 2016, BostonGoogle Scholar
  19. 19.
    Gopienko VG, Neikov OD (2009) Chapter 14: production of titanium and titanium alloy powders. Handbook of non-ferrous metal powders: technologies and applications. Elsevier, Oxford, pp 314–323CrossRefGoogle Scholar
  20. 20.
    Whittaker D, Froes FH (2015) 30—future prospects for titanium powder metallurgy markets BT—titanium powder metallurgy. Titanium Powder Metallurgy. Butterworth-Heinemann, Boston, pp 579–600CrossRefGoogle Scholar
  21. 21.
    Suzuki RO, Ono K, Teranuma K (2003) Calciothermic reduction of titanium oxide and in-situ electrolysis in molten CaCl2. Metall Mater Trans B 34:287–295. CrossRefGoogle Scholar
  22. 22.
    Suzuki RO, Inoue S (2003) Calciothermic reduction of titanium oxide in molten CaCl2. Metall Mater Trans B 34:277–285. CrossRefGoogle Scholar
  23. 23.
    Fray DJ (2001) Emerging molten salt technologies for metals production. JOM 53:27–31. CrossRefGoogle Scholar
  24. 24.
    Mohandas KS, Fray D (2004) FFC Cambridge process and removal of oxygen from metal-oxygen systems by molten salt electrolysis: an overview. Trans Indian Inst Met 57:579–592Google Scholar
  25. 25.
    Hogan L, McGinn E, Kendall R (2008) Research and development in titanium - implications for a titanium metal industry in Australia. ABARE, CanberraGoogle Scholar
  26. 26.
    Borys S, Anderson RP, Benish A, Jacobsen L, Ernst W, Kogut D, Lyssenko T (2005) Development status of the armstrong process for production of low cost titanium powder. In: Aeromat 2005, OrlandoGoogle Scholar
  27. 27.
    Okabe TH, Oda T, Mitsuda Y (2004) Titanium powder production by preform reduction process (PRP). J Alloys Compd 364:156–163. CrossRefGoogle Scholar
  28. 28.
    Trzcinski M (2006) The race is on for commercialization of titanium powder. Light Met Age 6:30–33Google Scholar
  29. 29.
    Zhang Y, Fang ZZ, Xia Y et al (2017) Hydrogen assisted magnesiothermic reduction of TiO2. Chem Eng J 308:299–310. CrossRefGoogle Scholar
  30. 30.
    Nersisyan HH, Won HI, Won CW et al (2014) Direct magnesiothermic reduction of titanium dioxide to titanium powder through combustion synthesis. Chem Eng J 235:67–74. CrossRefGoogle Scholar
  31. 31.
    Kan X, Ding J, Zhu H et al (2017) Low temperature synthesis of nanoscale titanium nitride via molten-salt-mediated magnesiothermic reduction. Powder Technol 315:81–86. CrossRefGoogle Scholar
  32. 32.
    Nersisyan HH, Won HI, Won CW et al (2013) Combustion synthesis of porous titanium microspheres. Mater Chem Phys 141:283–288. CrossRefGoogle Scholar
  33. 33.
    Bolívar R, Friedrich B (2009) Synthesis of titanium via magnesiothermic reduction of TiO2 (pigment). Proc Eur Metall Conf EMC 2009:1235–1254Google Scholar
  34. 34.
    Oosterhof C, Reitz J, Bolivar RBF (2010) Potentiale alternativer Herstellungskonzepte für Titanmetall und Titanlegierungen. In: 44. Metallurgische Seminar des Fachausschusses für Metallurgische, pp 131–162Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Mechanical Engineering ProgramPamplona UniversityPamplonaColombia
  2. 2.Institute of Process Metallurgy and Metal Recycling (IME)RWTH-Aachen UniversityAachenGermany

Personalised recommendations