Skip to main content
Log in

Stabilization of Stainless Steel Slag via Air Granulation

  • Thematic Section: Slag Granulation
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

In stainless steel production, slag from argon oxygen decarburization (AOD) converters is dumped on to the ground and then slowly cooled. The slag undergoes phase transformation from β-dicalcium silicate (β-C2S) to γ-dicalcium silicate (γ-C2S) at approximately 500 °C to 450 °C, resulting in slag volume expansion, disintegration, and dust generation. The dusty slag leads to challenges in material handling, metals recovery, and emissions control. Some operations use slag additives to stabilize slag, but this solution is expensive and can limit the end use of slag due to inclusion of toxic elements. Air granulation was hypothesized as a water-free method for stabilizing AOD slag via rapid quenching. Pilot-scale experiments at Sandvik Materials Technology (SMT) with silicon-reduced AOD slags confirmed that air granulation can produce products which are stable and dust free. Mineralogical analyses further indicated that these air-granulated stainless slags contained either no or low content of γ-C2S and are therefore stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chan CJ, Young JF (1992) Physical stabilization of the beta to gamma transformation in dicalcium silicate. J Am Ceram Soc. https://doi.org/10.1111/j.1151-2916.1992.tb04234.x

    Article  Google Scholar 

  2. Kim YJ, Nettleship I, Kriven WM (1992) Phase transformations in dicalcium silicate: II, TEM studies of crystallography, microstructure, and mechanisms. J Am Ceram Soc. https://doi.org/10.1111/j.1151-2916.1992.tb05593.x

    Article  Google Scholar 

  3. Serjun VZ, Mirtic B, Mladenovic A (2013) Evaluation of Ladle slag as a potential material for building and civil engineering. Mater Technol 47(5):543–550

    CAS  Google Scholar 

  4. Huang S, Guo M, Jones PT, and Blanpain B (2013) Fayalite slag modified stainless steel AOD slag. In: Proceedings of the Third International Slag Valorisation Symposium, pp. 107–110.

  5. Pontikes Y, Geysen D (2010) Options to prevent dicalcium silicate-driven disintegration of stainless steel slags. Arch Metall Mater. https://doi.org/10.2478/v10172-010-0020-6

    Article  Google Scholar 

  6. Durinck D, Arnout S, Jones PT, Blanpain B, and Wollants P (2008) Borate stabilization of air-cooled slags. GlobalSlag. https://www.globalslag.com/magazine/articles/456-borate-stabilisation-of-air-cooled-slags. Accessed 24 July 2018.

  7. Pontikes Y, Kriskova L, Wang X, Geysen D, Arnout S, Nagels E. Cizer, O, Van Gerven T, Elsen J, Guo M, Jones, P.T., and Blanpain B (2011) Additions of industrial residues for hot stage engineering of stainless steel slags. In: Proceedings of the Second International Slag Valorisation Symposium, pp. 313–326.

  8. Engstrom F, Pontikes Y, Geysen D, Jones PT, Bjorkman B, and Blanpain B (2011) Review: Hot stage engineering to improve slag valorisation options. Proceedings of the Second International Slag Valorisation Symposium, pp 231-251.

  9. Kriskova L, Pontikes Y, Pandelaers L, Cizer O, Jones PT, Van Balen K, Blanpain B (2013) Effect of high cooling rates on the minerology and hydraulic properties of stainless steel slags. Metall Mater Trans B. https://doi.org/10.1007/s11663-013-9894-9

    Article  Google Scholar 

  10. Barati M, Esfahani S, Utigard TA (2011) Energy recovery from high temperature slags. Energy. https://doi.org/10.1016/j.energy.2011.07.007

    Article  Google Scholar 

  11. Gajda K, Baunea M, Thöminga J (2017) Recycling options for steel working slag and upcycling perspectives. Procedia Manuf 8:643–648

    Article  Google Scholar 

  12. Lindvall M, Nordberg LO, Stenberg A, Orrling D (2015) SWEREA MEFOS experiences on dry blast furnace slag granulation. In: Proceedings of the 4th International Slag Valorisation Symposium, pp 57–61.

  13. Ando J, Nakahara T, Onoue H, Ichimura S, and Kondo M (1985) Development of slag blast granulation plant characterized by innovation of the slag treatment method, heat recovery, and recovery of slag as resources. Mitsubishi Heavy Industries, Ltd. Technical Review, pp 136–142

  14. Bolen J, Mostaghel S, So L, and Faucher S (2017) Technical and environmental benefits for dry atomization of stainless steel and ladle metallurgy slags. In: Proceedings for the 2017 Iron & Steel Technology Conference and Exposition, pp 149-156.

  15. Hannemann F, Bradfield M, Mahdi M, So L, Metcalfe D (2018) Impact of air granulation on the ferrochrome value chain in metallurgical smelter complexes. J S Afr Inst Min Metall. https://doi.org/10.17159/2411-9717/2018/v118n6a10

    Article  Google Scholar 

  16. Kappes H and Michels D (2015) Dry slag granulation and energy recovery. In: Proceedings of the Fourth International Slag Valorisation Symposium, pp 39–52.

  17. Jahanshahi S and Xie D (2012) Current status and future direction of CSIRO's dry slag granulation process with waste heat recovery. In: Proceedings for the 5th International Congress on the Science and Technology of Steelmaking 2012 (ICS 2012); CD ROM.

  18. Xie D, Pan Y, Flann R, Washington B, Sanetsis S, and Donnelley J (2007) Heat recovery from slag from dry granulation. First Centre for Sustainable Resource Processing Annual Conference, pp 29–30.

  19. Yu PF, Wang SZ (2017) Industrialization mode for energy recovery using dry centrifugal granulation process. Key Eng Mater 719:104–108

    Article  Google Scholar 

  20. McDonald IJ and Werner A (2015) Dry granulation with heat recovery. In: Proceedings of the 45th Ironmaking & Mineral Technology Seminar, pp 286–295.

  21. Fleischander A, Fenzl T, and Neuhold R (2018) Dry slag granulation—the future way to granulate blast furnace slag. In: Proceedings of the 2018 Iron & Steel Technology Conference and Exposition, pp 87–94.

  22. Björkman B, Engström F, Larsson M, Yang Q, Ye G, Lindvall M, Hasse B, Roininen J (2012) Stabilization and reuse of AOD-, EAF-, and ladle slag (88033), The Steel Eco-Cycle Scientific Final Report, pp 173–182. https://www.jernkontoret.se/globalassets/publicerat/forskning/d-rapporter/d-853_webb.pdf. Accessed 25 Sept 2018.

  23. Mostaghel S, Matsushita T, Samuelsson C, Bjorkman B, Seetharaman S (2013) Influence of alumina on physical properties of an industrial zinc-copper smelting slag. Part 1—viscosity. Mineral processing and extractive metallurgy (transactions of the mining and metallurgy: section C). https://doi.org/10.1179/1743285512Y.0000000029

  24. Mostaghel S, Matsushita T, Samuelsson C, Bjorkman B, Seetharaman S (2013) Influence of alumina on physical properties of an industrial zinc-copper smelting slag. Part 2—apparent density, surface tension and effective thermal diffusivity. Mineral processing and extractive metallurgy (transactions of the mining and metallurgy: section C). https://doi.org/10.1179/1743285512Y.0000000015

  25. Mostaghel S, Matsushita T, Samuelsson C, Bjorkman B, Seetharaman S (2013) Influence of alumina on physical properties of an industrial zinc-copper smelting slag. Part 3—melting behaviour. mineral processing and extractive metallurgy (transactions of the mining and metallurgy: section C). https://doi.org/10.1179/1743285512Y.0000000028

  26. Mostaghel S, Samuelsson C, Bjorkman B (2013) Influence of alumina on mineralogy and environmental properties of zinc-copper smelting slags. Int J Miner, Metall Mater. https://doi.org/10.1007/s12613-013-0718-3

    Article  Google Scholar 

  27. Wu L, Ek M, Song M, Sichen D (2011) The effect of solid particles on liquid viscosity. Steel Res Int. https://doi.org/10.1002/srin.201000207

    Article  Google Scholar 

  28. Eriksson J and Bjorkman B (2004) MgO modification of slag from stainless steelmaking. In: Proceedings of the VII International Conference on Molten Slags Fluxes and Salts, pp 455–460.

  29. Jalkina G, Teng L, Bjorkman B, Seetharaman S (2013) Effect of low oxygen partial pressure on the chromium partition in CaO-MgO-SiO2-Cr2O3-Al2O3 synthetic slag at elevated temperatures. Steel Res Int. https://doi.org/10.1002/srin.201200214

    Article  Google Scholar 

  30. Ylipekkala J (2005) Quality management of chromium containing steel slags from melt phase to cooling. (Master’s Thesis). Lulea University of Technology, Lulea, Sweden.

  31. Levin EM, Robbins CR, McMurdie HF (1964) Phase diagrams for ceramists. The American Ceramic Society, Columbus

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank Magnus Eriksson of Harsco and Lennart Johansson of SMT for their support during the execution of the trials. Fredrik Engström of LTU is gratefully acknowledged for support with XRD analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lily Lai Chi So.

Ethics declarations

Conflict of interest

The authors Lily Lai Chi So, Mahdi Mahdi, Janice Bolen, Johannes Nell, Isabelle Nolet, and Darryl Metcalfe, declare that there are also no conflicts of interest. The authors disclose their employment with Hatch Ltd., a worldwide leading consulting company which provides a wide range of technology-agnostic studies and engineering services, as demonstrated in their execution of a front-end-loaded engineering approach that often involves scaled testing and various studies to first establish project feasibility, taking into consideration various technology solutions, before making recommendations for full-scale implementation. Air granulation, the subject matter discussed in this paper, is one of various technology solutions being studied and recommended by Hatch Ltd. for slag-handling practices.

Additional information

The contributing editor for this article was Sharif Jahanshahi.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lindvall, M., So, L.L.C., Mahdi, M. et al. Stabilization of Stainless Steel Slag via Air Granulation. J. Sustain. Metall. 5, 157–171 (2019). https://doi.org/10.1007/s40831-019-00212-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-019-00212-2

Keywords

Navigation