Skip to main content
Log in

The Rare Earth Elements Potential of Greek Bauxite Active Mines in the Light of a Sustainable REE Demand

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

More recent data of Greek bauxites from the Parnassos-Ghiona active mines prove that rare earth elements (REEs) occur mainly in the form of authigenic/diagenetic LREE3+ carbonate and phosphate minerals (bastnäsite/parisite group and florencite). Bulk geochemistry of representative samples, from underground mines and open pits, showed an increased content in LREE (ΣLREE—from La to Gd—varying between 106 and 913 ppm; avg. ΣLREE = 321 ppm; n = 17), and lower HREE (ΣHREE—from Tb to Lu including Y—varying between 45 and 179 ppm; avg. ΣHREE = 95; n = 17). The overall REE concentration (ΣREE + Y+Sc) varies from 192 to 1109 ppm (avg. 463 ppm; n = 17). The most abundant REE is Ce (min: 67 ppm; max: 655 ppm; avg. 193 ppm; n = 17), exhibiting in general a positive geochemical anomaly (avg. Ce/Ce* -CeA-: 2.6), identical to the case of marine Fe–Mn-crust and terrestrial desert vanish, implying also that Ce4+ may exist either in REE-oxides and/or epigenetically sorbed in Fe-oxides. On the other hand, Nd content, which is more interesting for the industry, is lower (avg. 41 ppm; n = 17). The concentration of REEs is much higher in Fe-rich (red) bauxite, compared to Fe-depleted (white) bauxite (avg. ΣREE + Y+Sc = 569 ppm and 268 ppm, respectively). The new data presented herein show a rather lower REE potential of Parnassos-Ghiona bauxites, compared to previous literature, but similar values compared to karst-type bauxites of the globe. Although their REE concentration is higher compared to that of various geochemical reference materials (i.e., positive REE geochemical anomalies in comparison with chondrites, UCC, PAAS, NASC, and ES), it is vitally lower compared to REE resources being mined, such as REE–Fe–Nb–Th deposits. A trend similar to REE geochemical trend also stands for most of the trace elements that are present in Greek bauxites—mainly HFSE—except for LILE. Besides, Greek bauxite metallurgical residue’s (red mud) REE content seems to be remarkably increased by almost two times compared to that of the Parnassos-Ghiona bauxite parent material. Scandium is another critical element. In the studied bauxites, it varies from 29 to 73 ppm (avg. 47 ppm; n = 17); it is typical for the Mediterranean and EU bauxites and laterites, but much lower compared to the exploitable Australian laterites. The Fe-rich samples contain higher concentrations of Sc compared to Fe-depleted (avg. 54 and 33 ppm, respectively). This means that common red Greek bauxite is rather more exploitable, with regard to Sc (and the rest REE), but not the white one (which is of high quality in terms of Al). Bulk geochemistry indicates that Sc is correlated to Fe but not to Zr, while microscale observations demonstrated the presence of fine-grained scandian-zircons. This is in line with a very recent study proving that Sc is mainly present in Fe-oxide minerals (mainly hematite and goethite) and zircons. Bulk geochemical Fe–Pb and Fe–As positive correlations are also verified among the associated trace elements. Finally, the investigation of the REE vertical distribution in a characteristic deposit of the B3 horizon (i.e., Pera Lakkos mine case study), showed that the REE concentration is increased in the Fe-rich domain (lying above the footwall limestone), as well as in the coal layer interstratified between the Fe-depleted domain and the hanging wall limestone. However, it is revealed that the Ce/Ce* (CeA) is increased in the coal layer and is raised to the uppermost Fe-depleted domain, but not the lowermost Fe-rich bauxite domain. This might be attributed to the Ce3+ ↔ Ce4+ and the LREE re-mobilization during the supergene/epigenetic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Arndt NT, Fontboté L, Hedenquist JW, Kesler SE, Thompson JFH, Wood DG (2017) Future global mineral resources. Geochem Perspect 6(1):1–171

    Article  Google Scholar 

  2. Chakhmouradian AR, Smith MP, Kynicky J (2015) From “strategic” tungsten to “green” neodymium: a century of critical metals at a glance. Ore Geol Rev 64:455–458

    Article  Google Scholar 

  3. Wall F, Rollat A, Pell RS (2017) Responsible sourcing of critical metals. Elements 13:313–318

    Article  CAS  Google Scholar 

  4. Mathieux F, Ardente F, Bobba S, Nuss P, Blengini G, Alves Dias P, Blagoeva D, Torres De Matos C, Wittmer D, Pavel C, Hamor T, Saveyn H, Gawlik B, Orveillon G, Huygens D, Garbarino E, Tzimas E, Bouraoui F, Solar S (2017) Critical raw materials and the circular economy—background report. JRC Science-for-policy Report, EUR 28832 EN, Publications Office of the European Union, Luxembourg. ISBN: 978-92-79-74282-8. https://doi.org/10.2760/378123JRC108710

  5. Binnemans K, Jones PT (2015) Rare earths and the balance problem. J Sustain Metall 1:29–38

    Article  Google Scholar 

  6. Binnemans K, Jones PT, Müller T, Yurramendi L (2018) Rare earths and the balance problem. J Sustain Metall 4:126–146

    Article  Google Scholar 

  7. British Geological Survey (2015) Supply risk list for chemical elements or element groups, which are of economic value. www.bgs.ac.uk/downloads/start.cfm?id=3075

  8. Hatch GP (2012) Dynamics in the global market for rare earths. Elements 8:341–346

    Article  Google Scholar 

  9. Jordens A, Cheng YP, Waters KE (2013) A review of the beneficiation of rare earth element bearing minerals. Min. Engineer 41:97–114

    Article  CAS  Google Scholar 

  10. Kanazawa Y, Kamitani M (2006) Rare earth minerals and resources in the world. J Alloys Compd 408–412:1339–1343

    Article  CAS  Google Scholar 

  11. Ling M-X, Liu Y-L, Williams IS, Teng F-Z, Yang X-Y, Ding X, Wei G-J, Xie L-H, Deng W-F, Sun W-D (2013) Formation of the world’s largest REE deposit through protracted fluxing of carbonatite by subduction-derived fluids. Sci Rep 3(1776):1–8

    Google Scholar 

  12. Smith MP, Moore K, Kavecsánszki D, Finch AA, Kynicky J, Wall F (2016) From mantle to critical zone: a review of large and giant sized deposits of the rare earth elements. Geochem Front 7:315–334

    CAS  Google Scholar 

  13. Steenfelt A, Kolb J, Thrane K (2016) Metallogeny of South Greenland: a review of geological evolution, mineral occurrences and geochemical exploration data. Ore Geol Rev 77:194–245

    Article  Google Scholar 

  14. Kato Y, Fujinaga K, Nakamura K, Takaya Y, Kitamura K, Ohta J, Toda R, Nakashima T, Iwamori H (2013) Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nat Geosci 4:535–539

    Article  CAS  Google Scholar 

  15. Takaya Y, Yasukawa K, Kawasaki T, Fujinaga K, Ohta J, Usui Y, Nakamura K, Kimura J-I, Chang Q, Hamada M, Dodbiba G, Nozaki T, Iijima K, Morisawa T, Kuwahara T, Ishida Y, Ichimura T, Kitazume M, Fujita T, Kato Y (2018) The tremendous potential of deep sea mud as a source of rare-earth elements. Sci Rep 8(5763):1–8

    CAS  Google Scholar 

  16. Mancheri NA (2015) World trade in rare earths, Chinese export restrictions, and implications. Resour Policy 46:262–271

    Article  Google Scholar 

  17. Deady EA, Mouchos E, Goodenouch K, Willianson BJ, Wall F (2016) A review of the potential for rare-earth element resources from European red muds: examples from Seydişehir, Turkey and Parnassus-Giona. Greece. Min Mag 80(1):43–61

    Article  CAS  Google Scholar 

  18. Goodenough KM, Schilling J, Jonsson E, Kalvig P, Charles N, Tuduri J, Deady EA, Sadeghi M, Schiellerup H, Müller A, Bertrand G, Arvanitidis N, Eliopoulos DG, Shaw RA, Thrane K, Keulen N (2016) Europe’s rare earth element resource potential: an overview of REE metallogenetic provinces and their geodynamic setting. Ore Geol Rev 72:838–856

    Article  Google Scholar 

  19. Mongelli G, Boni M, Oggiano G, Mameli P, Sinisi R, Buccione R, Mondillo N (2017) Critical metals distribution in Tethyan karst bauxite: the cretaceous Italian ores. Ore Geol Rev 86:526–536

    Article  Google Scholar 

  20. Radusinović S, Jelenković R, Pačevski A, Simić V, Božović D, Holclajtner-Antunović I, Životić D (2017) Content and mode of occurrences of rare earth elements in the Zagrad karstic bauxite deposit (Nikšić area, Montenegro). Ore Geol Rev 80:406–428

    Article  Google Scholar 

  21. U.S. Geological Survey (2018) Bauxite and alumina, statistics and information. http://minerals.usgs.gov/minerals/pubs/commodity/bauxite

  22. Gamaletsos PN, Godelitsas A, Kasama T, Church NS, Douvalis AP, Göttlicher J, Steininger R, Boubnov A, Pontikes Y, Tzamos E, Bakas T, Filippidis A (2017) Nano-mineralogy and -geochemistry of high-grade diasporic karst-type bauxite from Parnassos-Ghiona mines, Greece. Ore Geol Rev 84:228–244

    Article  Google Scholar 

  23. Gamaletsos PN, Godelitsas A, Kasama T, Kuzmin A, Lagos M, Mertzimekis TJ, Göttlicher J, Steininger R, Xanthos S, Pontikes Y, Angelopoulos GN, Zarkadas C, Komelkov A, Tzamos E, Filippidis A (2016) The role of nano-perovskite in the negligible thorium release in seawater from Greek bauxite residue (red mud). Sci Rep 6(21737):1–13

    Google Scholar 

  24. Mouchos E, Wall F, Williamson BJ, Palumbo-Roe B (2016) Easily leachable rare earth element phases in the Parnassos-Ghiona bauxite deposits, Greece. Bull Geol Soc Greece 50(4):1952–1958

    Article  Google Scholar 

  25. Gamaletsos P (2014) Mineralogy and geochemistry of bauxites from Parnassos-Ghiona mines and the impact on the origin of the deposits. Unpublished PhD thesis. National and Kapodistrian University of Athens, Athens, pp 1–361. http://hdl.handle.net/10442/hedi/42199

  26. Gamaletsos P, Godelitsas A, Mertzimekis TJ, Göttlicher J, Steininger R, Xanthos S, Berndt J, Klemme S, Kuzmin A, Bárdossy G (2011) Thorium partitioning in Greek industrial bauxite investigated by synchrotron radiation and laser-ablation techniques. Nucl Instrum Methods Phys Res B 269:3067–3073

    Article  CAS  Google Scholar 

  27. Laskou M, Andreou G (2003) Rare earth element distribution and REE-minerals from the Parnassos-Ghiona bauxite deposits, Greece. In: Eliopoulos D et al (eds) Mineral exploration and sustainable development: proceedings of the 7th biennial SGA-SEG meeting 2003, Athens, Greece, 24–28 August 2003. Millpress, Rotterdam, The Netherlands, pp 89–92. ISBN: 90-77017-77-1

  28. Mouchos E, Wall F, Williamson B (2017) High-Ce REE minerals in the Parnassus-Giona bauxite deposits, Greece. Appl Earth Sci 126:82–83

    Article  CAS  Google Scholar 

  29. Ochsenkühn-Petropoulou M, Ochsenkühn KM (1995) Rare earth minerals found in Greek Bauxites by SEM and EPMA. Eur Microsc Anal 49:13–14

    Google Scholar 

  30. Papastavrou S, Perdikatsis V (1987) U-Th and REE concentrations in bauxites and new aspects about the origin of bauxites in the Iti-mountains (C. Greece). In: Janković S (ed) Mineral deposits of the Tethyan Eurasian Metallogenic Belt between the Alps and the Pamirs. UNESCO/IGCP Project No 169: Geotectonic Evolution and Metallogeny of Mediterranean and SW Asia Department of Mineral Exploration, Faculty of Mining and Geology, Belgrade University, Belgrade, pp 111–118

  31. Vind J, Malfliet A, Blanpain B, Tsakiridis PE, Tkaczyk AH, Vassiliadou V, Panias D (2018) Rare earth element phases in bauxite residue. Minerals 8(77):1–32

    Google Scholar 

  32. Vind J, Malfliet A, Bonomi C, Paiste P, Sajó IE, Blanpain B, Tkaczyk AH, Vassiliadou V, Panias D (2018) Rare earth element phases in bauxite residue. Miner Eng 123:35–38

    Article  CAS  Google Scholar 

  33. Arp T (1985) Geologische Kartierung des Gebietes um Tithronion im Kallidromongebirge, Mittelgriechenland und petrographische Bearbeitung des Karstbauxites (b1). Unpublished PhD thesis. University of Hamburg, Hamburg, pp 1–213

  34. Biermann M (1983) Zur mineralogie, geochemie und genese des karstbauxites (B3 – horizont) an der Grenze Unter-Oberkreide in Mittelgriechenland: Unpublished PhD thesis. University of Hamburg, Hamburg, pp 1–134

  35. Eliopoulos DG, Economou-Eliopoulos M (2010) Arsenic distribution in laterite deposits of the Balkan Peninsula. In: Proceedings of XIX congress of the Carpathian Balkan Geological Association, Greece, 23–26 September 2010, vol 100. Scientific Annals, School of Geology, Aristotle University of Thessaloniki, pp 325–332

  36. Laskou M (1991) Concentrations of rare earths in Greek bauxites. Acta Geol Hung 34:395–404

    CAS  Google Scholar 

  37. Laskou M (2001) Chromite in karst bauxites, bauxitic laterites and bauxitic clays of Greece. In: Piestrzyński A et al (eds) Mineral deposits at the beginning of the 21st century, Proceedings of the 6th Biennial SGA-SEG Meeting 2001, Krakow, Poland, 26–29 August 2001. Swets & Zeitlingen Publishers, Lisse, pp 1091–1094. ISBN: 90-2651-846-3

  38. Laskou M, Economou-Eliopoulos M (2007) The role of microorganisms on the mineralogical and geochemical characteristics of the Parnassos-Ghiona bauxite deposits, Greece. J Geochem Explor 93:67–77

    Article  CAS  Google Scholar 

  39. Laskou M, Economou-Eliopoulos M (2013) Bio-mineralization and potential biogeochemical processes in bauxite deposits: genetic and ore quality significance. Miner Petrol 107:471–486

    Article  CAS  Google Scholar 

  40. Laskou M, Economou-Eliopoulos M, Mitsis I (2011) Bauxite ore as an energy source for bacteria driving iron-leaching and bio-mineralization. Hell J Geosci 45:163–173

    Google Scholar 

  41. Maksimović Z, Papastamatiou J (1973) Distribution d’oligoélements dans les gisements de bauxite de la Grèce centrale. Symp. ICSOBA, Nice, pp 33–46

    Google Scholar 

  42. Ochsenkühn KM, Parissakis G (1977) Quantitative Untersuchungen von Bauxiten Zentralgriechenlands mittels Atomabosrptions-spectroscopie und Flemmenatomemission. Microchim Acta 1:447–457

    Article  Google Scholar 

  43. Ochsenkühn-Petropulu M, Lyberopulu Th, Parissakis G (1995) Selective separation and determination of scandium from yttrium and lanthanides in red mud by a combined ion exchange/solvent extraction method. Anal Chim Acta 315(1–2):231–237

    Article  Google Scholar 

  44. Ochsenkühn-Petropoulou M, Ochsenkühn KM, Luck J (1991) Comparison of inductively coupled plasma mass spectrometry with inductively coupled plasma atomic emission spectrometry and instrumental neutron activation analysis for the determination of rare earth elements in Greek bauxites. Spectrochim Acta 46:51–65

    Article  Google Scholar 

  45. Ochsenkühn-Petropulu M, Lyberopulu Th, Parissakis G (1994) Direct determination of lanthanides, yttrium and scandium in bauxites and red mud from alumina production. Anal Chim Acta 296(3):305–313

    Article  Google Scholar 

  46. Papassiopi N, Vaxevanidou K, Paspaliaris I (2010) Effectiveness of iron reducing bacteria for the removal of iron from bauxite ores. Miner Eng 23:25–31

    Article  CAS  Google Scholar 

  47. Retzmann K (1986) Zur mineralogie, geochemie und genese des karstbauxites (B2-horizont) an der Grenze Jura/Kreide in Mittelgriechenland. Unpublished PhD thesis. University of Hamburg, Hamburg, pp 11–146

  48. Marquis EA, Seidman DN, Dunand DC (2002) Creep of precipitation-strengthened Al(Sc) alloys. In: Mishra RS, Earthman JC, Raj SV (eds) Creep deformation: fundamentals and applications. TMS Annual Meeting, Seattle, Washington, 17–21 February 2002, pp 299–308

  49. Bárdossy G (1982) Karst bauxites: bauxite deposits on carbonate rocks: Developments in Economic Geology 14. Elsevier, Amsterdam, pp 1–441

    Google Scholar 

  50. Valeton I (1972) Bauxites. Elsevier, Amsterdam, pp 1–226

    Google Scholar 

  51. Gamaletsos P, Godelitsas A, Dotsika E, Tzamos E, Göttlicher J, Filippidis A (2013) Geological sources of As in the environment of Greece: a review. In: Scozzari A, Dotsika E (eds) The volume “Threats to the quality of groundwater resources: prevention and control”. Springer’s review series “The handbook of environmental chemistry”, pp 77–113. https://doi.org/10.1007/698_2013_230

  52. Kalaitzidis S, Siavalas G, Skarpelis N, Araujo CV, Christanis K (2010) Late Cretaceous coal overlying karstic bauxite deposits in the Parnassus-Ghiona unit, Central Greece: coal characteristics and depositional environment. Int J Coal Geol 81:211–226

    Article  CAS  Google Scholar 

  53. Jarosewich E, Boatner LA (1991) Rare earth element reference samples for electron microprobe analyses. Geostand Newsl 15:397–399

    Article  CAS  Google Scholar 

  54. Özlü N (1983) Trace-element content of “karst bauxites” and their parent rocks in the Mediterranean belt. Miner Depos 18:469–476

    Article  Google Scholar 

  55. Boni M, Rollinson G, Mondillo N, Balassone G, Santoro L (2013) Quantitative mineralogical characterization of karst bauxite deposits in the southern Apennines, Italy. Econ Geol 108:813–833

    Article  CAS  Google Scholar 

  56. Buccione R, Mongelli G, Sinisi R, Boni M (2016) Relationship between geometric parameters and compositional data: a new approach to karst bauxites exploration. J Geochem Explor 169:192–201

    Article  CAS  Google Scholar 

  57. MacLean WH, Bonavia FF, Sanna G (1997) Argillite debris converted to bauxite during karst weathering: evidence from immobile element geochemistry at the Olmedo Deposit, Sardinia. Miner Depos 32:607–616

    Article  CAS  Google Scholar 

  58. Mameli P, Mongelli G, Oggiano G, Dinelli E (2007) Geological, geochemical and mineralogical features of some bauxite deposits from Nurra (Western Sardinia, Italy): insights on conditions of formation and parental affinity. Int J Earth Sci (Geol Rundsch) 96:887–902

    Article  CAS  Google Scholar 

  59. Mondillo N, Balassone G, Boni M, Rollinson G (2011) Karst bauxites in the Campania Apennines (southern Italy): a new approach. Period Miner 80(3):407–432

    Google Scholar 

  60. Mongelli G (1997) Ce-anomalies in the textural components of Upper Cretaceous karst bauxites from the Apulian carbonate platform (southern Italy). Chem Geol 140:69–76

    Article  CAS  Google Scholar 

  61. Mongelli G, Boni M, Buccione R, Sinisi R (2014) Geochemistry of the Apulian karst bauxites (southern Italy): chemical fractionation and parental affinities. Ore Geol Rev 63:9–21

    Article  Google Scholar 

  62. Mongelli G, Buccione R, Sinisi P (2015) Genesis of autochthonous and allochthonous Apulian karst bauxites (Southern Italy): climate constraints. Sediment Geol 325:168–176

    Article  Google Scholar 

  63. Mongelli G, Buccione R, Gueguen E, Langone A, Sinisi R (2016) Geochemistry of the apulian allochthonous karst bauxite, Southern Italy: distribution of critical elements and constraints on Late Cretaceous Peri-Tethyan palaeogeography. Ore Geol Rev 77:246–259

    Article  Google Scholar 

  64. Putzolu F, Papa AP, Mondillo N, Boni M, Balassone G, Mormone A (2018) Geochemical characterization of bauxite deposits from the Abruzzi Mining District (Italy). Minerals 8(298):1–24

    Google Scholar 

  65. Hanilçi N (2013) Geological and geochemical evolution of the Bolkardaği bauxite deposits, Karaman, Turkey: transformation from shale to bauxite. J Geochem Explor 133:118–137

    Article  CAS  Google Scholar 

  66. Karadağ MM, Küpeli Ş, Arýk F, Ayhan A, Zedef V, Döyen A (2009) Rare earth element (REE) geochemistry and genetic implications of the Mortaş bauxite deposit (Seydişehir/Konya—southern Turkey). Chemie Erde 69:143–159

    Article  CAS  Google Scholar 

  67. Öztürk H, Hein JR, Hanilçi N (2002) Genesis of the Doğankuzu and Mortaş bauxite deposits, Taurides, Turkey: separation of Al, Fe, and Mn and implications for passive margin metallogeny. Econ Geol 97:1063–1077

    Article  Google Scholar 

  68. Papastamatiou J, Maksimovic Z (1970) Contribution to the study of genesis of Greek bauxites: chemical and mineralogical composition of Mandra II bauxite deposits. Ann Inst Geol Publ Hung 3:391–402

    Google Scholar 

  69. Kiskyras D (1960) Die mineralogische Zusammensetzung der griechischen Bauxite in Abhängigkeit von der Tektonik. J Mineral Geochem (Former: Neues Jahrb Mineral Abhandl) 94:662–680

  70. Laskou M, Economou M (1991) Platinum group elements and gold concentrations in Greek bauxites. Geol Balcan 21:65–77

    CAS  Google Scholar 

  71. Gamaletsos P, Godelitsas A, Chatzitheodoridis E, Kostopoulos D (2007) Laser micro-Raman investigation of Greek bauxites from the Parnassos-Ghiona active mining area. Bull Geol Soc Greece 40:736–746

    Article  Google Scholar 

  72. Perdikatsis V (1992) Quantitative mineralogical analysis of bauxites by X-ray diffraction with the Rietveld method. Acta Geol Hung 35:447–457

    CAS  Google Scholar 

  73. Grice JD, Maisonneuve V, Leblanc M (2007) Natural and synthetic fluoride carbonates. Chem Rev 107:114–132

    Article  CAS  Google Scholar 

  74. Maksimović Z, Pantó G (1991) Contribution to the geochemistry of the rare earth elements in the karst-bauxite deposits of Yugoslavia and Greece. Geoderma 51:93–109

    Article  Google Scholar 

  75. Maksimović Z, Pantó G (1996) Authigenic rare earth minerals in karst-bauxites and karstic nickel deposits. In: Jones AP, Wall F, Williams CT (eds) Rare earth minerals: Chemistry, origin and ore deposits. Chapman & Hill, London, pp 257–279

    Google Scholar 

  76. Moëlo Y, Lulzac Y, Rouer O, Palvadeau P, Gloaguen É, Léone P (2002) Scandium mineralogy: pretulite with scandian zircon and zenotime-(Y) within an apatite-rich oolitic ironstone from Saint-Aubin-Des-Châteaux, Armorican massif, France. Can Mineral 40:1657–1673

    Article  Google Scholar 

  77. Breiter K, Förster H-J, Škoda R (2006) Extreme P-, Bi-, Nb-, Sc-, U- and F-rich zircon from fractionated perphosphorous granites: the peraluminous Podlesí granite system, Czech Republic. Lithos 88:15–34

    Article  CAS  Google Scholar 

  78. Gramaccioli CM, Diella V, Demartin F (2000) The formation of scandium minerals as an example of the role of complexes in the geochemistry of rare earths and HFS elements. Eur J Mineral 12:795–808

    Article  CAS  Google Scholar 

  79. Goldstein J, Newbury DE, Joy DC, Lyman CE, Echlin P, Lifshin E, Sawyer L, Michael JR (2003) Scanning electron microscopy and X-ray microanalysis, 3rd edn. Springer, New York, pp 1–689. https://doi.org/10.1007/978-1-4615-0215-9

    Book  Google Scholar 

  80. Goldstein J, Newbury DE, Michael JR, Ritchie NWM, Scott JHJ, Joy DC (2018) Scanning electron microscopy and X-ray microanalysis, 4th edn. Springer, New York, pp 1–550. https://doi.org/10.1007/978-1-4939-6676-9

    Book  Google Scholar 

  81. Chassé M, Griffin WL, O’Reilly SY, Calas G (2016) Scandium speciation in a world-class lateritic deposit. Geochem Perspect 3:105–114

    Google Scholar 

  82. Rudnick R, Gao S (2003) Composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 3. Elsevier–Pergamon, Oxford, pp 1–64

    Google Scholar 

  83. Ostergren JD, Bargar JR, Brown GE Jr, Parks GA (1999) Combined EXAFS and FTIR investigation of sulfate and carbonate effects on Pb(ll) sorption to goethite (α-FeOOH). J Synchrotron Radiat 6:645–647

    Article  CAS  Google Scholar 

  84. O’Reilly SE, Hochella MF Jr (2003) Lead sorption efficiencies of natural and synthetic Mn and Fe-oxides. Geochim Cosmochim Acta 67(23):4471–4487

    Article  CAS  Google Scholar 

  85. Valeton I, Biermann M, Reche R, Rosenberg F (1987) Genesis of nickel laterites and bauxites in Greece during the Jurassic and the Cretaceous and their relation to ultrabasic rocks. Ore Geol Rev 2:359–404

    Article  CAS  Google Scholar 

  86. Valeton I (1994) Element concentration and formation of ore deposits by weathering. CATENA 21:99–129

    Article  CAS  Google Scholar 

  87. Mudd GM, Jowitt SM, Werner TT (2017) The world’s by-product and critical metal resources part I: uncertainties, current reporting practices, implications and grounds for optimism. Ore Geol Rev 86:924–938

    Article  Google Scholar 

  88. Burke IT, Peacock CL, Lockwood CL, Stewart DI, Mortimer RJG, Ward MB, Renforth P, Gruiz K, Mayes WM (2013) Behavior of aluminum, arsenic, and vanadium during the neutralization of red mud leachate by HCl, gypsum, or seawater. Environ Sci Technol 47:6527–6535

    Article  CAS  Google Scholar 

  89. Abedini A, Calagari AA, Azizi MR (2018) The tetrad-effect in rare earth elements distribution patterns of titanium-rich bauxites: evidence from the Kanigorgeh deposit, NW Iran. J Geochem Explor 186:129–142

    Article  CAS  Google Scholar 

  90. Calagari AA, Abenini A (2007) Geochemical investigations on Permo-Triassic bauxite horizon at Kanisheeteh, east of Bukan, West-Azarbaidjan, Iran. J Geochem Explor 94:1–18

    Article  CAS  Google Scholar 

  91. Khosravi M, Abedini A, Alipour S, Mongelli G (2017) The Darzi-Vali bauxite deposit, West-Azarbaidjan Province, Iran: critical metals distribution and parental affinities. J Afr Earth Sci 129:960–972

    Article  CAS  Google Scholar 

  92. Ahmadnejad F, Zamanian H, Taghipour B, Zarasvandi A, Buccione R, Ellahi SS (2017) Mineralogical and geochemical evolution of the Bidgol bauxite deposit, Zagros Mountain Belt, Iran: implications for ore genesis, rare earth elements fractionation and parental affinity. Ore Geol Rev 86:755–783

    Article  Google Scholar 

  93. Rafiei B, Mollai H, Ghorbani M (2008) The genesis of Late Triassic allochthonous karst-type bauxite deposits of the Kisejin area, Ab-e-Garm district, Iran. N Jb Geol Paläont Abh 250(2):217–231

    Article  Google Scholar 

  94. Zamanian H, Ahmadnejad F, Zarasvandi A (2016) Mineralogical and geochemical investigations of the Mombi bauxite deposit, Zagros Mountains, Iran. Chem Erde Geochem 76:13–37

    Article  CAS  Google Scholar 

  95. Zarasvandi A, Charchi A, Carranza EJM, Alizadeh B (2008) Karst bauxite deposits in the Zagros Mountain Belt, Iran. Ore Geol Rev 34:521–532

    Article  Google Scholar 

  96. Esmaeily D, Rahimpour-Bonab H, Esna-Ashari A, Kananian A (2010) Petrography and geochemistry of the Jajarm karst bauxite ore deposit, NE Iran: implications for source rock material and ore genesis. Turk J Earth Sci 19:267–284

    CAS  Google Scholar 

  97. Zarasvandi A, Carranza EJM, Ellahi SS (2012) Geological, geochemical, and mineralogical characteristics of the Mandan and Deh-now bauxite deposits, Zagros Fold Belt, Iran. Ore Geol Rev 48:125–138

    Article  Google Scholar 

  98. Liu X, Wang Q, Deng J, Zhang Q, Sun S, Meng J (2010) Mineralogical and geochemical investigations of the Dajia Salento-type bauxite deposits, western Guangxi, China. J Geochem Explor 105:137–152

    Article  CAS  Google Scholar 

  99. Liu X, Wang Q, Zhang Q, Zhang Y, Li Y (2016) Genesis of REE minerals in the karstic bauxite in western Guangxi, China, and its constraints on the deposit formation conditions. Ore Geol Rev 75:100–115

    Article  Google Scholar 

  100. Wang Q, Deng J, Liu X, Zhang Q, Sun S, Jiang C, Zhou F (2010) Discovery of the REE minerals and its geological significance in the Quyang bauxite deposit, West Guangxi, China. J Asian Earth Sci 39:701–712

    Article  Google Scholar 

  101. Li Z, Din J, Liao C, Yin F, L T, Cheng L, Li J (2013) Discovery of the REE minerals in the Wulong-Nanchuan bauxite deposits, Chongqing, China: insights on conditions of formation and processes. J Geochem Explor 133:88–102

  102. Liu X, Wang Q, Feng Y, Li Z, Cai S (2013) Genesis of the Guangou karstic bauxite deposit in western Henan, China. Ore Geol Rev 55:162–185

    Article  Google Scholar 

  103. Wang Q, Liu X, Yan C, Cai S, Li Z, Wang Y, Zhao J, Li G (2012) Mineralogical and geochemical studies of boron-rich bauxite ore deposits in the Songqi region, SW Henan, China. Ore Geol Rev 48:258–270

    Article  Google Scholar 

  104. Ling K-Y, Zhu X-Q, Tang H-S, Wang Z-G, Yan H-W, Han T, Chen W-Y (2015) Mineralogical characteristics of the karstic bauxite deposits in the Xiuwen ore belt, Central Guizhou Province, Southwest China. Ore Geol Rev 65:84–96

    Article  Google Scholar 

  105. Gromet LP, Dymek RF, Haskin LA, Korotev RL (1984) The “North American shale composite”: its compilation, major and trace element characteristics. Geochim Cosmochim Acta 48:2469–2482

    Article  CAS  Google Scholar 

  106. Boynton WV (1985) Cosmochemistry of the rare earth elements: Meteorite studies, In: Henderson P (ed) Rare earth element geochemistry. Developments in geochemistry, vol 2, Elsevier, Amsterdam, pp 115–152

  107. Haskin LA, Haskin MA, Frey FA, Wildman TR (1968) Relative and absolute terrestrial abundances of the rare earths. In: Ahrens LH (ed) Origin and distribution of the elements, vol 1. Pergamon, Oxford, pp 889–911

    Chapter  Google Scholar 

  108. Haskin LA, Wildeman TR, Haskin MA (1968) An accurate procedure for the determination of the rare earths by neutron activation. J Radioanal Chem 1:337–348

    Article  CAS  Google Scholar 

  109. Haskin LA, Helmke PA, Paster TP, Allen RO (1971) Rare earths in meteoritic, terrestrial, and lunar matter. In: Brunfelt A, Steinnes E (eds) Activation analysis in geochemistry and cosmochemistry. Universitetsforlaget, Oslo, Proc. NATO Conf. on Activation Analysis in Geochemistry, pp 201–218

    Google Scholar 

  110. Korotev RL (1996) A self-consistent compilation of elemental concentration data for 93 geochemical reference samples. Geostand Newsl 20:217–245

    Article  CAS  Google Scholar 

  111. Korotev RL (1996) On the relationship between the Apollo 16 ancient regolith breccias and feldspathic fragmental breccias, and the composition of the prebasin crust in the Central Highlands of the Moon. Meteor Planet Sci 31:403–412

    Article  CAS  Google Scholar 

  112. Taylor SR, McClennan SM (1985) The continental crust: Its composition and evolution. Blackwell, Oxford, pp 1–312

    Google Scholar 

  113. Wakita H, Rey P, Schmitt RA (1971) Elemental abundances of major, minor, and trace elements in Apollo 11 lunar rocks, soil and core samples. In: Proceedings of the Apollo 11 lunar science conference, pp 1685–1717

  114. Rollinson H (1993) Using geochemical data; evaluation, presentation, interpretation. Pearson Education Limited, Great Britain, pp 1–352. ISBN: 9-780582-067011

  115. Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53:197–214

    Article  CAS  Google Scholar 

  116. Anders E, Ebihara M (1982) Solar-system abundances of the elements. Geochim Cosmochim Acta 46:2363–2380

    Article  CAS  Google Scholar 

  117. Evensen NM, Hamilton PJ, O’Nions RK (1978) Rare-earth abundances in chondritic meteorites. Geochim Cosmochim Acta 42:1199–1212

    Article  CAS  Google Scholar 

  118. Laul JC (1979) Neutron activation analysis of geologic materials. At Energy Rev 17:603–695

    CAS  Google Scholar 

  119. Masuda A, Nakamura N, Tanaka T (1973) Fine structure of mutually normalized rare-earth patterns of chondrites. Geochim Cosmochim Acta 37:239–248

    Article  CAS  Google Scholar 

  120. McDonough WF, Sun S-S (1995) Composition of the Earth. Chem Geol 120:223–253

    Article  CAS  Google Scholar 

  121. Nakamura N (1974) Determination of REE, Ba, Fe, Mg, Na, and K in carbonaceous and ordinary chondrites. Geochim Cosmochim Acta 38:757–775

    Article  CAS  Google Scholar 

  122. Palme H (1988) Chemical abundances in meteorites. In: Klare G (ed) Reviews in modern astronomy. Springer, Berlin, pp 28–51

    Google Scholar 

  123. Korotev RL (2010) “Rare Earth Plots” and the concentrations of rare earth elements (REE) in chondritic meteorites. http://meteorites.wustl.edu/goodstuff/ree-chon.htm. Accessed Feb 2010

  124. Haskin MA, Haskin LA (1966) Rare earths in European shales: a redetermination. Science 154:507–509

    CAS  Google Scholar 

  125. McClennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Lipin BR, McKay GA (eds) Geochemistry and mineralogy of rare earth elements. Reviews in Mineralogy, vol 21, Mineralogical Society of America, Washington, DC, pp 169–200

  126. Aplin AC (1984) Rare earth element geochemistry of Central Pacific ferromanganese encrustations. Earth Planet Sci Lett 71:13–22

    Article  CAS  Google Scholar 

  127. De Carlo EH, McMurtry GM (1992) Rare earth element geochemistry of ferromanganese crusts from the Hawaiian archipelago, Central Pacific. Chem Geol 95:235–250

    Article  Google Scholar 

  128. Elderfield H, Graves MJ (1981) Negative cerium anomalies in the rare earth element patterns of oceanic ferromanganese nodules. Earth Planet Sci Lett 55:163–170

    Article  CAS  Google Scholar 

  129. Hein JR, Koschinsky A, Bau M, Manheim FT, Kang JK, Roberts L (2000) Cobalt rich ferromanganese crusts in the Pacific. In: Cronan DS (ed) Handbook of marine mineral deposits. CRC Press NY, Mar Sci Ser, pp 239–280

    Google Scholar 

  130. Rajani RP, Banakar VK, Parthiban G, Mudholkar AV, Chodankar AR (2005) Compositional variation and genesis of ferromanganese crusts of the Afanasiy-Nikitin Seamount, Equatorial Indian Ocean. J Earth Syst Sci 114(1):51–61

    Article  CAS  Google Scholar 

  131. Wen X, De Carlo EH, Li YH (1997) Interelement relation-ship in ferromanganese crusts from the Central Pacific Ocean. Their implications for crust genesis. Mar Geol 136:277–297

    Article  CAS  Google Scholar 

  132. Ohta A, Ishii S, Sakakibara M, Mizuno A, Kawabe I (1999) Systematic correlation of the Ce anomaly with the Co/(Ni + Cu) ratio and Y fractionation from Ho in distinct types of Pacific deep-sea nodules. Geochem J 33:399–417

    Article  CAS  Google Scholar 

  133. Piper DZ (1974) Rare earth elements in ferromanganese nodules and other marine phases. Geochim Cosmochim Acta 38:1007–1022

    Article  CAS  Google Scholar 

  134. Thiagarajan N, Aeolus Lee C-T (2004) Trace-element evidence for the origin of desert varnish by direct aqueous atmospheric deposition. Earth Planet Sci Lett 224:131–141

    Article  CAS  Google Scholar 

  135. Boulangé B, Colin F (1994) Rare earth element mobility during conversion of nepheline syenite into lateritic bauxite at Passa Quatro, Minais Gerais, Brazil. Appl Geochem 9:701–711

    Article  Google Scholar 

  136. Zou H, McKeegan KD, Xu X, Zindler A (2004) Fe–Al-rich tridymite-hercynite xenoliths with positive cerium anomalies: preserved lateritic paleosols and implications for Miocene climate. Chem Geol 207:101–116

    Article  CAS  Google Scholar 

  137. Chakhmouradian AR, Zaitsev AN (2012) Rare earth mineralization in igneous rocks: sources and processes. Elements 8:347–353

    Article  CAS  Google Scholar 

  138. Mason B, Moore CB (1982) Principles of geochemistry. Wiley, New York, pp 1–344. ISBN: 0-471-57522-4

  139. Krauskopf KB, Bird DK (1994) Introduction to geochemistry. McGraw-Hill International Editions, New York, pp 1–667. ISBN: 0-07-035820-6

  140. German CR, Elderfield H (1990) Application of the Ce anomaly as a paleoredox indicator: the ground rules. Paleoceanography 5:823–833

    Article  Google Scholar 

  141. Li Y-H (1991) Distribution patterns of the elements in the ocean: a synthesis. Geochim Cosmochim Acta 55:3223–3240

    Article  CAS  Google Scholar 

  142. Liu Y-G, Miah MRU, Schmitt RA (1988) Cerium: a chemical tracer for paleo-oceanic redox conditions. Geochim Cosmochim Acta 52:1361–1371

    Article  CAS  Google Scholar 

  143. Piepgras DJ, Jacobsen SB (1992) The behavior of rare earth elements in seawater: precise determination of variations in the North Pacific water column. Geochim Cosmochim Acta 56:1851–1862

    Article  CAS  Google Scholar 

  144. Murphy K, Dymond J (1984) Rare earth elements fluxes and geochemical budget in the eastern equatorial Pacific. Nature 307:444–447

    Article  CAS  Google Scholar 

  145. Grimes CB, John BE, Kelemen PB, Mazdab FK, Wooden JL, Cheadle MJ, Hanghøj K, Schwartz JJ (2007) Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology 35(7):643–646

    Article  CAS  Google Scholar 

  146. Hanchar JM, Van Wenstrenen W (2007) Rare earth element behavior in zircon-melt systems. Elements 3:37–42

    Article  CAS  Google Scholar 

  147. Spathi A (1972) Distribution of trace elements in the bauxite bearing limestones of the Parnassos-Ghiona area. Bull Geol Soc Greece 9(2):177–205

    CAS  Google Scholar 

  148. Hatch JR, Leventhal JS (1992) Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chem Geol 99:65–82

    Article  CAS  Google Scholar 

  149. Jones B, Manning DAC (1994) Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem Geol 111:111–129

    Article  Google Scholar 

  150. Mazumdar A, Banerjee DM, Schidlowski M, Balaram V (1999) Rare-earth elements and Stable Isotope Geochemistry of early Cambrian chert-phosphorite assemblages from the Lower Tal Formation of the Krol Belt (Lesser Himalaya, India). Chem Geol 156:275–297

    Article  CAS  Google Scholar 

  151. Skarpelis N, Perlikos P, Gale N, Gale-Stos S (1989) Rare earth elements and gold in lateritic derived sedimentary nickeliferous iron ores: the Marmeiko deposit, Beotia, continental Greece. Bull Geol Soc Greece 26:121–128

    Google Scholar 

Download references

Acknowledgements

We are grateful to “Aluminium of Greece S.A.,” and its subsidiary “Delphi-Distomon S.A.,” as well as “S&B Industrial Minerals S.A.” (which has been recently consolidated by “Imerys S.A.”), and “ELMIN Hellenic Mining Enterprises S.A.” (whose the bauxite division has been acquired by “Imerys S.A.”) for supplying bauxite samples from the Parnassos-Ghiona mines. The “Ajkai Timföldgyár” alumina plant (“MAL Magyar Alumínium Zrt”) is duly acknowledged for the provision of bauxite samples from Hungarian, Bosnian, and Montenegrin active mines following György Bárdossy’s personal communication. Many thanks are offered to Dr. J. Göttlicher and Dr. R. Steininger (ANKA Synchrotron Facility/KIT, Germany) for provision of beamtime at the SUL-X beamline and collaboration, as well as to Dr. B. Schulz-Dobrick (retired, Johannes Gutenberg University/Mainz, Germany) for collaboration during XRF chemical analysis. We would like to thank our colleague Ms. B. Wenzell (Center for Electron Nanoscopy – Technical University of Denmark/CEN-DTU) for assistance in SEM–EDS/SEM–WDS measurements. Partial funding of this research leading to these results has been received from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007–2013) under REA Grant Agreement No. 609405 (COFUNDPostdocDTU). Finally, this article is respectfully dedicated to our memorable colleague György Bárdossy†. Academician György Bárdossy was a Hungarian geologist-geochemist whose pioneer study contributed to the geochemical investigation mainly of karst-type bauxites, laterite formation, and occurrence worldwide. In 1991, he became a member of the Croatian Academy of Sciences; in 1993, he was elected to the Hungarian Academy of Sciences (HAS) correspondent, and in 1998 he became a full member (HAS). In 2009, he became a member of the International Association of Mathematical Geology, and an honorary citizen of HAS. In 2012, he received the Academic Gold Medal of HAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Platon N. Gamaletsos.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest.

Additional information

The contributing editor for this article was Brajendra Mishra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3710 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamaletsos, P.N., Godelitsas, A., Filippidis, A. et al. The Rare Earth Elements Potential of Greek Bauxite Active Mines in the Light of a Sustainable REE Demand. J. Sustain. Metall. 5, 20–47 (2019). https://doi.org/10.1007/s40831-018-0192-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-018-0192-2

Keywords

Navigation