Skip to main content
Log in

Effects of Sn Addition on NiTi Shape Memory Alloys

  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

NiTiSn shape memory alloys provide a cost-effective alternative to many NiTi-based low-temperature shape memory alloy systems such as NiTi: Cr, Co, and Nb. To demonstrate the viability of NiTiSn shape memory alloys for low-temperature actuator applications, the NiTiSn alloy system was investigated over the course of four alloy heats (Heats I–IV). The site preference of Sn in near-equiatomic NiTi was examined by substituting Sn for Ni in Heat I and Sn for Ti in Heat II up to 10 at.% Sn. The effects of solution annealing (Heat III) and Ni:Ti ratio adjustments (Heat IV) on the phase transformation behavior and microstructural morphology of NiTiSn shape memory alloys were also assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Duerig T, Pelton A, Stöckel D (1999) An overview of nitinol medical applications. Mater Sci Eng A 273:149–160

    Article  Google Scholar 

  2. Frenzel J, George EP, Dlouhy A, Somsen C, Wagner MFX, Eggeler G (2010) Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 58(9):3444–3458

    Article  Google Scholar 

  3. Khalil-Allafi J, Dlouhy A, Eggeler G (2002) Ni 4 Ti 3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations. Acta Mater 50(17):4255–4274

    Article  Google Scholar 

  4. Young ML, Frotscher M, Bei H, Simon T, George EP, Eggeler G (2012) Nanoindentation of pseudoelastic NiTi containing Ni4Ti3 precipitates. Int J Mater Res 103(12):1434–1439

    Article  Google Scholar 

  5. Michutta J, Carroll M, Yawny A, Somsen C, Neuking K, Eggeler G (2004) Martensitic phase transformation in Ni-rich NiTi single crystals with one family of Ni 4 Ti 3 precipitates. Mater Sci Eng. A 378(1):152–156

    Article  Google Scholar 

  6. Frenzel J, Zhang Z, Somsen C, Neuking K, Eggeler G (2007) Influence of carbon on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 55(4):1331–1341

    Article  Google Scholar 

  7. Kassab E, Neelakantan L, Frotscher M, Swaminathan S, Maaß B, Rohwerder M, Gomes J, Eggeler G (2014) Effect of ternary element addition on the corrosion behaviour of NiTi shape memory alloys. Mater Corros 65(1):18–22

    Article  Google Scholar 

  8. Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55(5):257–315

    Article  Google Scholar 

  9. Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50(5):511–678

    Article  Google Scholar 

  10. Van Humbeeck J (1999) Non-medical applications of shape memory alloys. Mater Sci Eng A 273:134–148

    Article  Google Scholar 

  11. Manuel MV (2016) Nickel titanium alloys, methods of manufacture thereof and article comprising the same. Google Patents, pp 1–3

  12. Eckelmeyer K (1976) The effect of alloying on the shape memory phenomenon in nitinol. Scr Metall 10(8):667–672

    Article  Google Scholar 

  13. Uchil J, Kumara KG, Mahesh KK (2001) Effects of heat treatment temperature and thermal cycling on phase transformations in Ni–Ti–Cr alloy. J Alloy Compd 325(1):210–214

    Article  Google Scholar 

  14. Benafan O, Notardonato WU, Meneghelli BJ, Vaidyanathan R (2013) Design and development of a shape memory alloy activated heat pipe-based thermal switch. Smart Mater Struct 22(10):105017

    Article  Google Scholar 

  15. Piao M, Miyazaki S, Otsuka K, Nishida N (1992) Effects of Nb addition on the microstructure of Ti–Ni alloys. Mater Trans JIM 33(4):337–345

    Article  Google Scholar 

  16. Frenzel J, Wieczorek A, Opahle I, Maaß B, Drautz R, Eggeler G (2015) On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys. Acta Mater 90:213–231

    Article  Google Scholar 

  17. Zheng YF, Yang F, Meng XL, Cai W, Zhao LC (2004) Microstructure and phase transformation of TiNi alloy with addition of third element Sn. Rare Metal Mater Eng 33(6):215–217

    Google Scholar 

  18. Kim J-H, Im Y-M, Noh J-P, Miyazaki S, Nam T-H (2011) Microstructures and martensitic transformation behavior of Ti–Ni–Sn alloys. Scr Mater 65(7):608–610

    Article  Google Scholar 

  19. Kim J-H, Choi H-J, Kim M-S, Miyazaki S, Kim Y-W, Chun BS, Nam T-H (2012) Crystallization and martensitic transformation behavior of Ti–Ni–Sn alloy ribbons. Intermetallics 30:51–56

    Article  Google Scholar 

  20. Choe H-J, Kim J-H, Lee S-H, Noh J-P, Kim Y-W, Miyazaki S, Nam T-H (2013) Microstructure and martensitic transformation behavior of crystallized Ti–36Ni–7Sn (at%) alloy ribbons. J Alloy Compd 577:S195–S199

    Article  Google Scholar 

  21. Choi H-J, Kim J-H, Noh J-P, Miyazaki S, Kim Y-W, Nam T-H (2011) Crystallization behavior and microstructure of Ti–36Ni–7Sn (at.%) alloy ribbons. Scr Mater 65(7):611–614

    Article  Google Scholar 

  22. Tong YX, Guo B, Chen F, Tian B, Li L, Zheng YF, Ma LW, Chung CY (2012) Two-way shape memory effect of TiNiSn alloys developed by martensitic deformation. Mater Sci Eng A 550:434–437

    Article  Google Scholar 

  23. Kim J-H, Jung K-T, Noh J-P, Cho G-B, Miyazaki S, Nam T-H (2013) Martensitic transformation behavior of Ti–Ni–Sn alloys. J Alloy Compd 577:S200–S204

    Article  Google Scholar 

  24. Jang J-Y, Chun S-J, Kim N-S, Cho J-W, Kim J-H, Yeom J-T, Kim J-I, Nam T-H (2013) Martensitic transformation behavior in Ti–Ni–X (Ag, In, Sn, Sb, Te, Tl, Pb, Bi) ternary alloys. Mater Res Bull 48(12):5064–5069

    Article  Google Scholar 

  25. Bozzolo G, Noebe RD, Mosca HO (2005) Site preference of ternary alloying additions to NiTi: Fe, Pt, Pd, Au, Al, Cu, Zr and Hf. J Alloy Compd 389(1):80–94

    Article  Google Scholar 

  26. Singh N, Talapatra A, Junkaew A, Duong T, Gibbons S, Li S, Thawabi H, Olivos E, Arróyave R (2016) Effect of ternary additions to structural properties of NiTi alloys. Comput Mater Sci 112(Part A):347–355

    Article  Google Scholar 

  27. International A (2016) Standard test method for energy dispersive X-ray spectrometer (EDX) analysis of metallic surface condition for gas distribution system components. ASTM International, West Conshohocken, PA

    Google Scholar 

  28. International A (2016) Standard Test Method for Transformation Temperature of Nickel-Titanium Alloys by Thermal Analysis. ASTM International, West Conshohocken, PA

    Google Scholar 

  29. Callister WD, Rethwisch DG (2011) Materials science and engineering, vol 5. Wiley, New York, p 5

    Google Scholar 

  30. Berche A, Tédenac JC, Fartushna J, Jund P (2016) Calphad assessment of the Ni–Sn–Ti system. Calphad 54:67–75

    Article  Google Scholar 

  31. Douglas JE, Birkel CS, Verma N, Miller VM, Miao M-S, Stucky GD, Pollock TM, Seshadri R (2014) Phase stability and property evolution of biphasic Ti–Ni–Sn alloys for use in thermoelectric applications. J Appl Phys 115(4):043720

    Article  Google Scholar 

  32. Romaka VV, Rogl P, Romaka L, Stadnyk Y, Melnychenko N, Grytsiv A, Falmbigl M, Skryabina N (2013) Phase equilibria, formation, crystal and electronic structure of ternary compounds in Ti–Ni–Sn and Ti–Ni–Sb ternary systems. J Solid State Chem 197:103–112

    Article  Google Scholar 

  33. Abujudom DN, Kao MY, Thoma PE, Angst DR (1992) High transformation temperature shape memory alloy. U.S. Patent 5,114,504

  34. Benafan O, Brown J, Calkins F, Kumar P, Stebner A, Turner T, Vaidyanathan R, Webster J, Young M (2014) Shape memory alloy actuator design: CASMART collaborative best practices and case studies. Int J Mech Mater Des 10(1):1–42

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Consortium for the Advancement of Shape Memory Alloy Research and Technology (CASMART). This research was a direct result of the CASMART Student Design Challenge at the International Conference on Shape Memory and Superelastic Technologies (SMST 2017) [34]. The authors acknowledge the permission for SEM access by the UNT’s Materials Research Facility (MRF), and thank D. Scheiman for DSC characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avery W. Young.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Young, A.W., Torgerson, T., Ley, N.A. et al. Effects of Sn Addition on NiTi Shape Memory Alloys. Shap. Mem. Superelasticity 5, 125–135 (2019). https://doi.org/10.1007/s40830-018-00197-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-018-00197-z

Keywords

Navigation