Speciation analysis in chemistry

Abstract

The International Union of Pure and Applied Chemistry (IUPAC) definition of a chemical species is a “specific form of an element defined as to isotopic composition, electronic or oxidation state, and/or complex or molecular structure.” The composition and structure of the specific forms determine their properties, including their toxicity. This has important social consequences at the level of international guidelines. The quantitative determination or qualitative assessment of chemical species requires one to develop sufficiently sensitive and selective methods. All analytical methods have their specific advantages and disadvantages for species detection and quantifications. However, in most cases, separation methods like chromatography are required. A serious problem of validating an analytical method for chemical speciation is the scarce availability of reference materials. Another problem is the stability of species during sample treatment. Strategies for validation are spike and recovery assays as well as mass balance coherence. The validation of analytical methods for speciation analysis would be much simpler and more reliable if the analytical techniques had sufficient sensitivity and selectivity and were available to determine molecular and redox forms of an element directly on solid and liquid samples. Currently, technological efforts are being made in these directions, and thus the future looks promising.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Templeton DM, Ariese F, Cornelis R, Danielsson LG, Muntau H, Van Leeuwen HP, Łobiński R (2000) Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches (IUPAC recommendations 2000). Pure Appl Chem 72(8):1453–1470. https://doi.org/10.1351/pac200072081453

    CAS  Article  Google Scholar 

  2. 2.

    Lespes G, Zuliani T, Schaumlöffel D (2016) Need for revisiting the terminology about speciation. Environ Sci Pollut Res 23(15):15767–15770. https://doi.org/10.1007/s11356-016-6922-8

    Article  Google Scholar 

  3. 3.

    Akter KF, Owens G, Davey DE, Naidu R (2006) Arsenic speciation and toxicity in biological systems. Rev Environ Contam Toxicol 184:97

    Google Scholar 

  4. 4.

    United Nations ACC Sub-Committee on Water Resources -New York, US (2001) United Nations synthesis report on arsenic in drinking water. World Health Organization (WHO), Geneva

    Google Scholar 

  5. 5.

    IARC (2004) IARC monographs on the evaluation of carcinogenic risks to humans. IARC, Lyon

    Google Scholar 

  6. 6.

    Kaise T, Watanabe S, Itoh K (1985) The acute toxicity of arsenobetaine. Chemosphere 14(9):1327–1332. https://doi.org/10.1016/0045-6535(85)90153-5

    CAS  Article  Google Scholar 

  7. 7.

    Irvin TR, Irgolic KJ (1988) Arsenobetaine and arsenocholine: two marine arsenic compounds without embryotoxity. Appl Organomet Chem 2(6):509–514. https://doi.org/10.1002/aoc.590020603

    CAS  Article  Google Scholar 

  8. 8.

    Derelanko MJ, Hollinger MA (2001) Handbook of toxicology. CRC, Boca Raton

    Google Scholar 

  9. 9.

    Kaise T, Yamauchi H, Horiguchi Y, Tani T, Watanabe S, Hirayama T, Fukui S (1989) A comparative study on acute toxicity of methylarsonic acid, dimethylarsinic acid and trimethylarsine oxide in mice. Appl Organomet Chem 3(3):273–277. https://doi.org/10.1002/aoc.590030311

    CAS  Article  Google Scholar 

  10. 10.

    Kaise T, Fukui S (1992) The chemical form and acute toxicity of arsenic compounds in marine organisms. Appl Organomet Chem 6(2):155–160. https://doi.org/10.1002/aoc.590060208

    CAS  Article  Google Scholar 

  11. 11.

    Deichmann WB, Gerarde HW (1969) Toxicology of drugs and chemicals. Academic, Cambridge

    Google Scholar 

  12. 12.

    Navas-Acien A, Francesconi KA, Silbergeld EK, Guallar E (2011) Seafood intake and urine concentrations of total arsenic, dimethylarsinate and arsenobetaine in the US population. Environ Res 111(1):110–118. https://doi.org/10.1016/j.envres.2010.10.009

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Mac Monagail M, Morrison L (2019) Arsenic speciation in a variety of seaweeds and associated food products. Comprehen Anal Chem. https://doi.org/10.1016/bs.coac.2019.03.005

    Article  Google Scholar 

  14. 14.

    Lee SG, Kim DH, Lee YS, Cho SY, Chung MS, Cho M, Kang Y, Kim H, Kim D, Lee KW (2018) Monitoring of arsenic contents in domestic rice and human risk assessment for daily intake of inorganic arsenic in Korea. J Food Compos Anal 69:25–32. https://doi.org/10.1016/j.jfca.2018.02.004

    CAS  Article  Google Scholar 

  15. 15.

    Florence TM (1982) The speciation of trace elements in waters. Talanta 29(5):345–364. https://doi.org/10.1016/0039-9140(82)80169-0

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Blayney MB (2001) The need for empirically derived permeation data for personal protective equipment: the death of Dr. Karen E. Wetterhahn. Appl Occup Environ Hyg 16(2):233–236. https://doi.org/10.1080/104732201460389

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    U.S. EPA. (2016) Guidance for Conducting Fish Consumption Surveys. EPA 823-B-16-002, Washington, DC. U.S. Environmental Protection Agency, Office of Water

  18. 18.

    Mahaffey KR, Clickner RP, Bodurow CC (2004) Blood organic mercury and dietary mercury intake: National Health and Nutrition Examination Survey, 1999 and 2000. Environ Health Perspect 112(5):562–570

    CAS  Article  Google Scholar 

  19. 19.

    Ishihara N (2014) History of ignorance of methylmercury toxicity and intoxication in Japan in relation to Minamata disease. Nihon Eiseigaku Zasshi Japn J Hyg 69(1):75–79. https://doi.org/10.1265/jjh.69.75

    CAS  Article  Google Scholar 

  20. 20.

    Dorea JG, Farina M, Rocha JB (2013) Toxicity of ethylmercury (and thimerosal): a comparison with methylmercury. J Appl Toxicol 33(8):700–711. https://doi.org/10.1002/jat.2855

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Scholz F, Kahlert H (2015) The calculation of the solubility of metal hydroxides, oxide-hydroxides, and oxides, and their visualisation in logarithmic diagrams. ChemTexts 1(1):7. https://doi.org/10.1007/s40828-015-0006-0

    CAS  Article  Google Scholar 

  22. 22.

    De Gregori I, Quiroz W, Pinochet H, Pannier F, Potin-Gautier M (2005) Simultaneous speciation analysis of Sb(III), Sb(V) and (CH3)3SbCl2 by high performance liquid chromatography-hydride generation-atomic fluorescence spectrometry detection (HPLC-HG-AFS): application to antimony speciation in sea water. J Chromatogr A 1091(1–2):94–101. https://doi.org/10.1016/j.chroma.2005.07.060

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Hall GEM, Pelchat JC, Gauthier G (1999) Stability of inorganic arsenic (III) and arsenic (V) in water samples. J Anal At Spectrom 14(2):205–213. https://doi.org/10.1039/A807498D

    CAS  Article  Google Scholar 

  24. 24.

    Chen Y-C, Amarasiriwardena CJ, Hsueh Y-M, Christiani DC (2002) Stability of arsenic species and insoluble arsenic in human urine. Cancer Epidemiol Biomark Prev 11(11):1427–1433

    CAS  Google Scholar 

  25. 25.

    Gómez-Ariza JL, Pozas JA, Giráldez I, Morales E (1999) Stability and storage problems in selenium speciation from environmental samples. Int J Environ Anal Chem 74(1–4):215–231. https://doi.org/10.1080/03067319908031427

    Article  Google Scholar 

  26. 26.

    Lin YA, Jiang SJ, Sahayam AC (2017) Determination of antimony compounds in waters and juices using ion chromatography-inductively coupled plasma mass spectrometry. Food Chem 230:76–81. https://doi.org/10.1016/j.foodchem.2017.03.014

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Potin-Gautier M, Pannier F, Quiroz W, Pinochet H, De Gregori I (2005) Antimony speciation analysis in sediment reference materials using high-performance liquid chromatography coupled to hydride generation atomic fluorescence spectrometry. Anal Chim Acta 553(1–2):214–222. https://doi.org/10.1016/j.aca.2005.07.055

    CAS  Article  Google Scholar 

  28. 28.

    Miravet R, López-Sánchez JF, Rubio R, Smichowski P, Polla G (2007) Speciation analysis of antimony in extracts of size-classified volcanic ash by HPLC-ICP-MS. Anal Bioanal Chem 387(5):1949–1954. https://doi.org/10.1007/s00216-006-1077-y

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Nemanič T, Zupancic-Kralj L, Milacic R, Ščančar J (2007) Critical evaluation of different extraction procedures for determination of organotin compounds in mussels. Acta Chim Slov 54:40–48

    Google Scholar 

  30. 30.

    Thompson M, Ellison S, Wood R (2002) Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure Appl Chem. https://doi.org/10.1351/pac200274050835

    Article  Google Scholar 

  31. 31.

    Hieftje GM (1998) Speciation in atomic spectrometry—an oxymoron? Spectrochim Acta Part B 53(2):165–167. https://doi.org/10.1016/S0584-8547(97)00133-X

    Article  Google Scholar 

  32. 32.

    Krachler M, Alvarez-Sarandes R (2016) Capabilities of high resolution ICP-OES for plutonium isotopic analysis. Microchem J 125:196–202. https://doi.org/10.1016/j.microc.2015.11.028

    CAS  Article  Google Scholar 

  33. 33.

    Skoog DA, Holler FJ, Crouch SR (2007) Principles of Instrumental Analysis, 6th edn. Thomson Brooks/Cole, Belmont

    Google Scholar 

  34. 34.

    Stürup S, Dahlgaard H, Chen Nielsen S (1998) High resolution inductively coupled plasma mass spectrometry for the trace determination of plutonium isotopes and isotope ratios in environmental samples. J Anal At Spectrom 13(12):1321–1326. https://doi.org/10.1039/A806408C

    Article  Google Scholar 

  35. 35.

    Zheng J, Yamada M (2012) Determination of plutonium isotopes in seawater reference materials using isotope-dilution ICP-MS. Appl Radiat Isot 70(9):1944–1948. https://doi.org/10.1016/j.apradiso.2012.02.049

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Garcia Alonso J, Rodríguez-González P (2013) Isotope dilution mass spectrometry. The Royal Society of Chemistry (RSC), Thomas Graham House, Science Park, Milton Road, Cambridge, UK

  37. 37.

    Moffett JW, Zika RG (1987) Solvent extraction of copper acetylacetonate in studies of copper(II) speciation in seawater. Mar Chem 21(4):301–313. https://doi.org/10.1016/0304-4203(87)90053-3

    CAS  Article  Google Scholar 

  38. 38.

    Plyasunova NV, Wang M, Zhang Y, Muhammed M (1997) Critical evaluation of thermodynamics of complex formation of metal ions in aqueous solutions II. Hydrolysis and hydroxo-complexes of Cu2+ at 298.15 K. Hydrometallurgy 45(1):37–51. https://doi.org/10.1016/S0304-386X(96)00073-4

    CAS  Article  Google Scholar 

  39. 39.

    Werner J, Grześkowiak T, Zgoła-Grześkowiak A, Stanisz E (2018) Recent trends in microextraction techniques used in determination of arsenic species. TrAC Trends Anal Chem 105:121–136. https://doi.org/10.1016/j.trac.2018.05.006

    CAS  Article  Google Scholar 

  40. 40.

    Scholz F, Lovrić M (1996) The standard potentials of the electrode “dissolved atomic mercury/dissolved mercury ions.” Electroanalysis 8(11):1075–1076. https://doi.org/10.1002/elan.1140081118

    CAS  Article  Google Scholar 

  41. 41.

    Oda CE, Ingle JD (1981) Speciation of mercury with cold vapor atomic absorption spectrometry by selective reduction. Anal Chem 53(14):2305–2309. https://doi.org/10.1021/ac00237a040

    CAS  Article  Google Scholar 

  42. 42.

    Welz B, Sperling M (1998) Atomizers and atomizer units. Atomic absorption spectrometry. Wiley-VCH, Weinheim, Germany, pp 149–219. https://doi.org/10.1002/9783527611690.ch4

    Google Scholar 

  43. 43.

    Fuentes E, Pinochet H, Potin-Gautier M, De Gregori I (2004) Fractionation and redox speciation of antimony in agricultural soils by hydride generation-atomic fluorescence spectrometry and stability of Sb(III) and Sb(V) during extraction with different extractant solutions. J AOAC Int 87(1):60–67

    CAS  Article  Google Scholar 

  44. 44.

    Cordos EA, Frentiua T, Pontaa M, Abrahamb B, Margineana l (2006) Optimisation of analytical parameters in inorganic arsenic (III and V) speciation by hydride generation using l-cysteine as prereducing agent in diluted HCl medium. Chem Speciat Bioavailab 18(1):1–9. https://doi.org/10.3184/095422906782146276

    CAS  Article  Google Scholar 

  45. 45.

    Quináia SP, Rollemberg MdCE (1997) Selective reduction of arsenic species by hydride generation: atomic absorption spectrometry part 1—reduction media. J Braz Chem Soc 8:349–356

    Article  Google Scholar 

  46. 46.

    Cerveira C, Pozebon D, de Moraes DP, Silva de Fraga JC (2015) Speciation of inorganic arsenic in rice using hydride generation atomic absorption spectrometry (HG-AAS). Anal Methods 7(11):4528–4534. https://doi.org/10.1039/C5AY00563A

    CAS  Article  Google Scholar 

  47. 47.

    Masscheleynm PH, Delaune RD, Patrick WH (1991) Selenium speciation in aqueous solutions using a hydride generation atomic absorption spectrophotometry technique. Spectrosc Lett 24(2):307–322. https://doi.org/10.1080/00387019108020658

    Article  Google Scholar 

  48. 48.

    Fio JL, Fujii R (1990) Selenium speciation methods and application to soil saturation extracts from San Joaquin Valley, California. Soil Sci Soc Am J 54(2):363–369. https://doi.org/10.2136/sssaj1990.03615995005400020011x

    CAS  Article  Google Scholar 

  49. 49.

    Cutter G (1978) Species determination of selenium in natural waters. Anal Chim Acta 98:59–66. https://doi.org/10.1016/S0003-2670(01)83238-4

    CAS  Article  Google Scholar 

  50. 50.

    Yu Y, Jia Y, Shi Z, Chen Y, Ni S, Wang R, Tang Y, Gao Y (2018) Enhanced photochemical vapor generation for the determination of bismuth by inductively coupled plasma mass spectrometry. Anal Chem 90(22):13557–13563. https://doi.org/10.1021/acs.analchem.8b03681

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Wu P, He L, Zheng C, Hou X, Sturgeon RE (2010) Applications of chemical vapor generation in non-tetrahydroborate media to analytical atomic spectrometry. J Anal At Spectrom 25(8):1217–1246. https://doi.org/10.1039/C003483E

    CAS  Article  Google Scholar 

  52. 52.

    Sturgeon RE (2017) Photochemical vapor generation: a radical approach to analyte introduction for atomic spectrometry. J Anal At Spectrom 32(12):2319–2340. https://doi.org/10.1039/C7JA00285H

    CAS  Article  Google Scholar 

  53. 53.

    Hsiung TM, Huang CW (2006) Quantitation of toxic arsenic species and arsenobetaine in Pacific oysters using an off-line process with hydride generation-atomic absorption spectroscopy. J Agric Food Chem 54(7):2470–2478. https://doi.org/10.1021/jf051181x

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Rüsz Hansen H, Pergantis SA (2006) Detection of antimony species in citrus juices and drinking water stored in PET containers. J Anal At Spectrom 21(8):731–733. https://doi.org/10.1039/B606367E

    Article  Google Scholar 

  55. 55.

    Gao Y, De Galan S, De Brauwere A, Baeyens W, Leermakers M (2010) Mercury speciation in hair by headspace injection-gas chromatography-atomic fluorescence spectrometry (methylmercury) and combustion-atomic absorption spectrometry (total Hg). Talanta 82(5):1919–1923. https://doi.org/10.1016/j.talanta.2010.08.012

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Pétursdóttir AH, Gunnlaugsdóttir H, Jörundsdóttir H, Mestrot A, Krupp EM, Feldmann J (2012) HPLC-HG-ICP-MS: a sensitive and selective method for inorganic arsenic in seafood. Anal Bioanal Chem 404(8):2185–2191. https://doi.org/10.1007/s00216-012-6347-2

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Olivares D, Bravo M, Feldmann J, Raab A, Neaman A, Quiroz W (2012) Development of an analytical method for antimony speciation in vegetables by HPLC-hydride generation-atomic fluorescence spectrometry. J AOAC Int 95(4):1176–1182. https://doi.org/10.5740/jaoacint.11-278

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Companys E, Galceran J, Pinheiro JP, Puy J, Salaün P (2017) A review on electrochemical methods for trace metal speciation in environmental media. Curr Opin Electrochem 3(1):144–162. https://doi.org/10.1016/j.coelec.2017.09.007

    CAS  Article  Google Scholar 

  59. 59.

    Scholz F (2015) Voltammetric techniques of analysis: the essentials. ChemTexts 1(4):17. https://doi.org/10.1007/s40828-015-0016-y

    Article  Google Scholar 

  60. 60.

    Omanović D, Branica M (2003) Pseudopolarography of trace metals: Part I. The automatic ASV measurements of reversible electrode reactions. J Electroanal Chem 543(1):83–92. https://doi.org/10.1016/S0022-0728(02)01484-5

    Article  Google Scholar 

  61. 61.

    Chen M-L, Ma L-Y, Chen X-W (2014) New procedures for arsenic speciation: a review. Talanta 125:78–86. https://doi.org/10.1016/j.talanta.2014.02.037

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Domínguez-Renedo O, Gómez González MJ, Arcos-Martínez MJ (2009) Determination of antimony (III) in real samples by anodic stripping voltammetry using a mercury film screen-printed electrode. Sensors (Basel) 9(1):219–231. https://doi.org/10.3390/s90100219

    CAS  Article  Google Scholar 

  63. 63.

    Toghill K, Lu M, Compton R (2011) Electroanalytical determination of antimony. Int J Electrochem Sci 6(8):3057–3076

    CAS  Google Scholar 

  64. 64.

    Mays DE, Hussam A (2009) Voltammetric methods for determination and speciation of inorganic arsenic in the environment—a review. Anal Chim Acta 646(1):6–16. https://doi.org/10.1016/j.aca.2009.05.006

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Devi P, Jain R, Thakur A, Kumar M, Labhsetwar NK, Nayak M, Kumar P (2017) A systematic review and meta-analysis of voltammetric and optical techniques for inorganic selenium determination in water. TrAC Trends Anal Chem 95:69–85. https://doi.org/10.1016/j.trac.2017.07.012

    CAS  Article  Google Scholar 

  66. 66.

    Clough R, Harrington CF, Hill SJ, Madrid Y, Tyson JF (2018) Atomic Spectrometry update: review of advances in elemental speciation. J Anal At Spectrom 33(7):1103–1149. https://doi.org/10.1039/C8JA90025F

    CAS  Article  Google Scholar 

  67. 67.

    Roldán N, Salinas-Parra N, Gonzalez AA, Cifuentes-Araneda F, Arias H, Bravo M, Quiroz W (2016) Implementation of an analytical method for the determination of inorganic arsenic species in occupationally exposed human urine samples and its toxic effects on epithelial cells of renal collecting tubule. J Chilean Chem Soc 61(4):3214–3218. https://doi.org/10.4067/S0717-97072016000400013

    Article  Google Scholar 

  68. 68.

    Belzile N, Chen YW, Filella M (2011) Human exposure to antimony: I. Sources and intake. Crit Rev Environ Sci Technol 41(14):1309–1373. https://doi.org/10.1080/10643381003608227

    CAS  Article  Google Scholar 

  69. 69.

    Uexküll Ov, Skerfving S, Doyle R, Braungart M (2005) Antimony in brake pads - a carcinogenic component? J Clean Prod 13(1):19-31. https://doi.org/10.1016/j.jclepro.2003.10.008

    Article  Google Scholar 

  70. 70.

    Filella M, May PM (2005) Critical appraisal of available thermodynamic data for the complexation of antimony(III) and antimony(V) by low molecular mass organic ligands. J Environ Monit 7(12):1226–1237. https://doi.org/10.1039/b511453e

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Roldán N, Pizarro D, Verdugo M, Salinas-Parra N, Quiroz W, Reyes-Martinez C, Figueroa S, Quiroz C, Gonzalez AA (2020) Antimony(III) induces fibroblast-like phenotype, profibrotic factors and reactive oxygen species in mouse renal cells. Environ Chem 17(2):182–190. https://doi.org/10.1071/EN19156

    CAS  Article  Google Scholar 

  72. 72.

    Natasha SM, Khalid S, Bibi I, Bundschuh J, Khan Niazi N, Dumat C (2020) A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: ecotoxicology and health risk assessment. Sci Total Environ 711:134749. https://doi.org/10.1016/j.scitotenv.2019.134749

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Rice KM, Walker EM Jr, Wu M, Gillette C, Blough ER (2014) Environmental mercury and its toxic effects. J Prev Med Public Health 47(2):74–83. https://doi.org/10.3961/jpmph.2014.47.2.74

    Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Amde M, Yin Y, Zhang D, Liu J (2016) Methods and recent advances in speciation analysis of mercury chemical species in environmental samples: a review. Chem Speciat Bioavailab 28(1–4):51–65. https://doi.org/10.1080/09542299.2016.1164019

    CAS  Article  Google Scholar 

  75. 75.

    Chen B, Wu Y, Guo X, He M, Hu B (2015) Speciation of mercury in various samples from the micro-ecosystem of East Lake by hollow fiber-liquid–liquid–liquid microextraction-HPLC-ICP-MS. J Anal At Spectrom 30(4):875–881. https://doi.org/10.1039/C4JA00312H

    CAS  Article  Google Scholar 

  76. 76.

    Wuilloud R, Berton P (2014) Selenium speciation in the environment. CRC, Boca Raton, pp 263–305

    Google Scholar 

  77. 77.

    Chandrasekaran K, Ranjit M, Arunachalam J (2009) Determination of inorganic selenium species [Se(IV) and Se(VI)] in tube well water samples in Punjab India. Chem Speciat Bioavailab 21(1):15–22. https://doi.org/10.3184/095422909X416405

    CAS  Article  Google Scholar 

  78. 78.

    Sentkowska A (2019) Chromatographic analysis of selenium species. IntechOpen. https://doi.org/10.5772/intechopen.87053

    Article  Google Scholar 

  79. 79.

    Kremer D, Ilgen G, Feldmann J (2005) GC-ICP-MS determination of dimethylselenide in human breath after ingestion of (77)Se-enriched selenite: monitoring of in-vivo methylation of selenium. Anal Bioanal Chem 383(3):509–515. https://doi.org/10.1007/s00216-005-0001-1

    CAS  Article  PubMed  Google Scholar 

  80. 80.

    Laughlin RB, Olof L (1987) Tributyltin: contemporary environmental issues. Ambio 16(5):252–256

    CAS  Google Scholar 

  81. 81.

    Yáñez J, Riffo P, Mansilla HD, Bravo M, Quiroz W, Santander P (2016) Speciation analysis of organotin compounds (OTCs) by a simultaneous hydride generation–liquid/liquid extraction and GC–MS determination. Microchem J 126:460–465. https://doi.org/10.1016/j.microc.2016.01.002

    CAS  Article  Google Scholar 

  82. 82.

    Attar KM (1996) Analytical methods for speciation of organotins in the environment. Appl Organomet Chem 10(5):317–337. https://doi.org/10.1002/(sici)1099-0739(199606)10:5%3c317::Aid-aoc485%3e3.0.Co;2-4

    CAS  Article  Google Scholar 

  83. 83.

    Inagaki K, Takatsu A, Watanabe T, Aoyagi Y, Yarita T, Okamoto K, Chiba K (2007) Certification of butyltins and phenyltins in marine sediment certified reference material by species-specific isotope-dilution mass spectrometric analysis using synthesized 118Sn-enriched organotin compounds. Anal Bioanal Chem 387(7):2325–2334. https://doi.org/10.1007/s00216-006-0677-x

    CAS  Article  PubMed  Google Scholar 

  84. 84.

    De Gregori I, Quiroz W, Pinochet H, Pannier F, Potin-Gautier M (2007) Speciation analysis of antimony in marine biota by HPLC-(UV)-HG-AFS: extraction procedures and stability of antimony species. Talanta 73(3):458–465. https://doi.org/10.1016/j.talanta.2007.04.015

    CAS  Article  PubMed  Google Scholar 

  85. 85.

    Quiroz W, Astudillo F, Bravo M, Cereceda-Balic F, Vidal V, Palomo-Marín MR, Rueda-Holgado F, Pinilla-Gil E (2016) Antimony speciation in soils, sediments and volcanic ashes by microwave extraction and HPLC-HG-AFS detection. Microchem J 129:111–116. https://doi.org/10.1016/j.microc.2016.06.016

    CAS  Article  Google Scholar 

  86. 86.

    Canada NRC DORM-4 (2012): Fish protein certified reference material for trace metals. https://doi.org/10.4224/crm.2012.dorm-4https://nrc.canada.ca/en/certifications-evaluations-standards/certified-reference-materials/list/49/html.

  87. 87.

    Canada NRC DOLT-5: Dogfish Liver Certified Reference Material for Trace Metals and other Constituents. https://doi.org/10.4224/crm.2014.dolt-5https://nrc-digital-repository.canada.ca/eng/view/object/?id=78bfab6b-21cf-4733-a871-cac430f711f5.

  88. 88.

    Dressler V, Santos C, Antes F, Flores E, Pozebon D (2013) Speciation analysis of tin in environmental samples. CRC, Boca Raton, pp 478–512

    Google Scholar 

  89. 89.

    Gui-bin J, Qun-fang Z, Bin H (2000) Speciation of organotin compounds, total tin, and major trace metal elements in poisoned human organs by gas chromatography-flame photometric detector and inductively coupled plasma-mass spectrometry. Environ Sci Technol 34(13):2697–2702. https://doi.org/10.1021/es0008822

    CAS  Article  Google Scholar 

  90. 90.

    Leermakers M, Nuyttens J, Baeyens W (2005) Organotin analysis by gas chromatography-pulsed flame-photometric detection (GC-PFPD). Anal Bioanal Chem 381(6):1272–1280. https://doi.org/10.1007/s00216-004-3050-y

    CAS  Article  PubMed  Google Scholar 

  91. 91.

    Kaňa A, Klimšová Z, Mestek O (2019) Internal standardisation for arsenic and its species determination using inductively coupled plasma mass spectrometry. Talanta 192:86–92. https://doi.org/10.1016/j.talanta.2018.09.038

    CAS  Article  PubMed  Google Scholar 

  92. 92.

    Gray PJ, Tanabe CK, Ebeler SE, Nelson J (2017) A fast and fit-for-purpose arsenic speciation method for wine and rice. J Anal At Spectrom 32(5):1031–1034. https://doi.org/10.1039/C7JA00041C

    CAS  Article  Google Scholar 

  93. 93.

    Evans EH, Clough R (2005) Isotope dilution analysis. In: Worsfold P, Townshend A, Poole C (eds) Encyclopedia of analytical science. Elsevier, Oxford, pp 545–553

    Google Scholar 

  94. 94.

    Huo D, “Skip” Kingston HM, Larget B (2000) Chapter 10 Application of isotope dilution in elemental speciation: speciated isotope dilution mass spectrometry (SIDMS). Comprehen Anal Chem 33:277–313. https://doi.org/10.1016/S0166-526X(00)80020-3

    CAS  Article  Google Scholar 

  95. 95.

    Foster AL, Kim CS (2014) Arsenic speciation in solids using X-ray absorption spectroscopy. Rev Mineral Geochem 79(1):257–369. https://doi.org/10.2138/rmg.2014.79.5

    Article  Google Scholar 

Download references

Funding

The author gratefully acknowledges the financial support of FONDECYT Project 1191041 of the Chilean Government.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Waldo Quiroz.

Ethics declarations

Conflict of interest

The author declares no potential conflicts of interest with respect to the research, authorship, or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Quiroz, W. Speciation analysis in chemistry. ChemTexts 7, 7 (2021). https://doi.org/10.1007/s40828-020-00125-8

Download citation

Keywords

  • Speciation
  • Chemical species
  • Analytical chemistry
  • Hyphenated techniques
  • Chemistry education