Advertisement

ChemTexts

, 5:18 | Cite as

Lipoic acid

  • Raghavendra Ramachanderan
  • Bernd SchaeferEmail author
Lecture Text
  • 31 Downloads

Abstract

Lipoic acid is an essential cofactor in cellular catabolism, such as in the oxidative decarboxylation of pyruvate and of α-ketoglutarate in the mitochondrial matrix of eukaryotes and the cytoplasm of prokaryotes. Today, lipoic acid is marketed as an ingredient in dietary supplements, in sports nutrition, anti-aging remedies and in drugs to treat diabetic polyneuropathy. Several fascinating details of the biosynthesis have been elucidated. Despite this, lipoic acid cannot be commercially produced by fermentation due to low titers and consequently high manufacturing costs. Over the last 65 years, however, numerous total syntheses towards lipoic acids have been published. At the end of the last century, Degussa and BASF developed manufacturing processes for commercial bulk quantities of both racemic and enantiopure R-(+)-lipoic acid.

Keywords

Thioctic acid Oxidative decarboxylation Glycine cleavage system Arsenic poisoning Dehydrogenase complex Lipoylation Total synthesis 

Notes

References

  1. 1.
    Reed LJ (2001) J Mol Biol 276:38329–38336Google Scholar
  2. 2.
    Reed LJ (1957) Adv Enzymol Rel Subj Biochem 18:319–347Google Scholar
  3. 3.
    Hackert ML, Appling DR, Lambowitz AM (2015) PNAS 112:6247iCrossRefGoogle Scholar
  4. 4.
    Snell EE, Tatum EL, Peterson WH (1937) J Bact 33:207–225PubMedGoogle Scholar
  5. 5.
    Guirard RM, Snell EE, Williams RJ (1946) Arch Biochem Biophys 9:381–386Google Scholar
  6. 6.
    Gunsalus IC, O’Kane DJ (1947) J Bact 54:20–21PubMedGoogle Scholar
  7. 7.
    Gunsalus IC, O’Kane DJ (1948) J Bact 56:499–506PubMedGoogle Scholar
  8. 8.
    Frauenfelder H, Sligar SG, Wolfe RS (2015) Irwin C. Gunsalus 1912–2008 Biographical Memoirs, National Academy of Sciences, www.nasonline.org/memoirs
  9. 9.
    Snell EE, Broquist HP (1949) Arch Biochem 23:326–328PubMedGoogle Scholar
  10. 10.
    Stoksted ELR, Hoffmann CE, Regan MA, Fordham D, Jukes TH (1949) Arch Biochem 20:75–82Google Scholar
  11. 11.
    Shane B, Carpenter KJ (1997) J Nutr 127:199–201PubMedCrossRefGoogle Scholar
  12. 12.
    Reed LJ, DeBusk BG, Gunsalus IC, Hornberger CS Jr (1951) Science 114:93–94PubMedCrossRefGoogle Scholar
  13. 13.
    Gunsalus IC (1953) J Cell Comp Physiol 41:113–136CrossRefGoogle Scholar
  14. 14.
    Brockman JA Jr, Stokstad ELR, Patterson EL, Pierce JV, Macchi M, Day FP (1952) J Am Chem Soc 74:1868CrossRefGoogle Scholar
  15. 15.
    Peters RA, Sinclair HM, Thompson RHS (1946) Biochem J 40:516–524PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Peters RA (1949) Symp Soc Exper Biol 3:36–59Google Scholar
  17. 17.
    Peters RA (1952) Proc R Soc Lond B Biol Sci 139:143–170PubMedCrossRefGoogle Scholar
  18. 18.
    Reed LJ, Gunsalus IC (1962) β-lipoic acid (5-(1-oxodithiolan-3-yl)pentanoic acid, CAS: 6992-30-9) is an oxidation product of α-lipoic acid. Research Corporation, New York, US 3049549Google Scholar
  19. 19.
    Bullock MW, Brockman JA Jr, Patterson EL, Pierce JV, Stokstad ELR (1952) J Am Chem Soc 74:3455CrossRefGoogle Scholar
  20. 20.
    Bullock MW, Brockman JA Jr, Patterson EL, Pierce JV, Stokstad ELR (1952) J Am Chem Soc 74:1868–1869CrossRefGoogle Scholar
  21. 21.
    Bullock MW, Brockman JA Jr, Patterson EL, Pierce JV, von Saltza MH, Sanders F, Stokstad ELR (1954) J Am Chem Soc 76:1828–1832CrossRefGoogle Scholar
  22. 22.
    Mislow K, Meluch WC (1956) J Am Chem Soc 78:5920–5923CrossRefGoogle Scholar
  23. 23.
    Brookes MH, Golding BT, Howes DA, Hutson AT (1983) J Chem Soc Chem Commun 1051–1053 Google Scholar
  24. 24.
    Brookes MH, Golding BT, Hudson AT (1988) J Chem Soc Perkin Trans I:9–12CrossRefGoogle Scholar
  25. 25.
    Ikuta N, Sugiyama H, Shimosegawa H, Nakane R, Ishida Y, Uekaji Y, Nakata D, Pallauf K, Rimbach G, Terao K, Matsugo S (2013) Int J Mol Sci 14:3639–3655PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
  27. 27.
    Until 1929, Meyerhof worked at the Kaiser Wilhelm Institute for Biology in Berlin-Dahlem. https://de.wikipedia.org/wiki/Otto_Fritz_Meyerhof (29-12-2018)
  28. 28.
    Kresge N, Simoni RD, Hill RL (2005) J Biol Chem 280:124–126Google Scholar
  29. 29.
    Barnett JA (2003) Yeast 20:509–543PubMedCrossRefGoogle Scholar
  30. 30.
    Kennedy EP, Lehninger AL (1948) J Biol Chem 172:847–848PubMedPubMedCentralGoogle Scholar
  31. 31.
    Lehninger AL, Kennedy EP (1948) J Biol Chem 173:753–771PubMedPubMedCentralGoogle Scholar
  32. 32.
    Kennedy EP, Lehninger AL (1949) J Biol Chem 179:957–972PubMedPubMedCentralGoogle Scholar
  33. 33.
    Lynen F, Reichert E, Rueff L (1951) Liebigs Ann Chem 574:1–32CrossRefGoogle Scholar
  34. 34.
    Baddiley J, Thain EM, Novelli GD, Lipmann F (1953) Nature 171:76PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Krebs HA, Henseleit K (1932) Klin Wochenschr 11:757–759CrossRefGoogle Scholar
  36. 36.
    Krebs HA, Henseleit K (1932) Klin Wochenschr 11:1137–1139CrossRefGoogle Scholar
  37. 37.
    Krebs HA, Johnson WA (1937) Enzymologia 4:148–156Google Scholar
  38. 38.
    Krebs HA, Johnson WA (1937) Biochem J 31:645–660PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Krebs HA, Johnson WA (1937) Biochem J 31:772–779PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Krebs HA (1937) Lancet 230:736–738CrossRefGoogle Scholar
  41. 41.
    Krebs HA (1938) Biochem J 32:108–112PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Krebs HA, Salvin E, Johnson WA (1938) Biochem J 32:113–117PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kalckar HM (1991) Ann Rev Biochem 60:1–37PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Kalckar HM (1974) Mol Cell Biochem 5:55–63PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Belitser VA, Tsibakova ET (1939) Biokhimya 4:516–534Google Scholar
  46. 46.
    Lipmann F (1941) Adv Enzymol 1:99–162Google Scholar
  47. 47.
    Friedkin M, Lehninger AL (1949) J Biol Chem 178:611–644PubMedPubMedCentralGoogle Scholar
  48. 48.
    Korkes S, Stern JR, Gunsalus IC, Ochoa S (1950) Nature 166:439–441PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Korkes S, del Campillo A, Ochoa S (1952) J Biol Chem 195:541–547PubMedPubMedCentralGoogle Scholar
  50. 50.
    Strecker HJ, Ochoa S (1954) J Biol Chem 209:313–326PubMedGoogle Scholar
  51. 51.
    Littlefield JW, Sanadi DR (1952) J Biol Chem 199:65–70PubMedGoogle Scholar
  52. 52.
    Gunsalus IC (1954) In: McElroy WD, Glass B (eds) Mechanism of enzyme action. Johns Hopkins Press, Baltimore, p 545Google Scholar
  53. 53.
    Hanson RW (1987) J Chem Educ 64:591–595CrossRefGoogle Scholar
  54. 54.
    Decarboxylation of pyruvic acid in the presence of hydrogen peroxide: Lopalco A, Dalwadi G, Niu S, Schowen RL, Douglas J, Stella VJ (2016) J Pharm Sci 105:705–713 and lit. cited thereinGoogle Scholar
  55. 55.
    Abiotic oxidative decarboxylations of alpha-ketoacids: Springsteen G, Yerabolu JR, Nelson J, Rhea CJ, Krishnamurthy R (2018) Nat Commun.  https://doi.org/10.1038/s41467-017-02591-0
  56. 56.
    Borodin A (1861) Ann Chem Pharm 119:121–123CrossRefGoogle Scholar
  57. 57.
    Borodin A (1861) Zeitschr Chem Pharm 4:5–7Google Scholar
  58. 58.
    Hunsdiecker C, Vogt E, Hunsdiecker H (1939) US 2176181Google Scholar
  59. 59.
    Hunsdiecker H, Hunsdiecker C (1942) Chem Ber 75:291–297CrossRefGoogle Scholar
  60. 60.
    Kochi JK (1965) J Am Chem Soc 87:2500–2502CrossRefGoogle Scholar
  61. 61.
    Feng Q, Song Q (2014) J Org Chem 79:1867–1871PubMedCrossRefGoogle Scholar
  62. 62.
    Tajima T, Kurihara H, Fuchigami T (2007) J Am Chem Soc 129:6680–6681PubMedCrossRefGoogle Scholar
  63. 63.
    Song HT, Ding W, Zhou QQ, Liu J, Lu LQ, Xiao WJ (2016) J Org Chem 81:7250–7255PubMedCrossRefGoogle Scholar
  64. 64.
    Schweet RS, Fuld M, Cheslock K, Paul MH (1951) In: McElroy WD, Glass B (eds) Phosphorous metabolism, vol 1. Johns Hopkins Press, Baltimore, p 246Google Scholar
  65. 65.
    Schweet RS, Cheslock K (1952) J Biol Chem 199:749–756PubMedGoogle Scholar
  66. 66.
    Reed LJ, DeBusk BG (1952) J Biol Chem 199:873–880PubMedGoogle Scholar
  67. 67.
    Reed LJ, DeBusk BG (1952) J Biol Chem 199:881–888PubMedGoogle Scholar
  68. 68.
    Reed LJ, DeBusk BG, Gunsalus IC, Schnakenberg GHF (1951) J Am Chem Soc 73:5920CrossRefGoogle Scholar
  69. 69.
    Reed LJ, DeBusk BG (1952) J Am Chem Soc 74:3964–3965CrossRefGoogle Scholar
  70. 70.
    Gunsalus IC, Barton LS, Gruber W (1956) J Am Chem Soc 78:1763–1766CrossRefGoogle Scholar
  71. 71.
    Yang YS, Frey PA (1986) Biochemistry 25:8173–8178PubMedCrossRefGoogle Scholar
  72. 72.
    Wang J, Nemeria NS, Chandrasekhar K, Kumaran S, Arjunan P, Reynolds S, Calero G, Brukh R, Kakalis L, Furey W, Jordan F (2014) J Biol Chem 289:15215–15230PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Hager LP, Gunsalus IC (1953) J Am Chem Soc 75:5767–5768CrossRefGoogle Scholar
  74. 74.
    Reed LJ (1962) Vitam Horm 20:1–38CrossRefGoogle Scholar
  75. 75.
    Breslow R (1957) J Am Chem Soc 79:1762–1763CrossRefGoogle Scholar
  76. 76.
    Howie JK, Houts JJ, Sawyer DT (1977) J Am Chem Soc 99:6323–6326PubMedCrossRefGoogle Scholar
  77. 77.
    Gossauer A (2006) Struktur und Reaktivität der Biomoleküle. Verlag Helvetica Chimica Acta, Zürich, pp 392–393Google Scholar
  78. 78.
    Tittmann K (2009) FEBS J 276:2454–2468PubMedCrossRefGoogle Scholar
  79. 79.
    Hermann W, Obeid R (2011) Vitamins in the prevention of human diseases. Walter de Gruyter, Berlin, p 58Google Scholar
  80. 80.
    Adamolekun B, Hiffler L (2017) Annals of the New York Academy of Sciences.  https://doi.org/10.1111/nyas.13509 PubMedCrossRefGoogle Scholar
  81. 81.
    Gunsalus IC (1954) Fed Proc 13:715–722PubMedGoogle Scholar
  82. 82.
    Reed LJ (1953) Physiol Rev 33:544–559PubMedCrossRefGoogle Scholar
  83. 83.
    Sanadi DR, Littlefield JW, Bock RM (1952) J Biol Chem 197:851–852PubMedGoogle Scholar
  84. 84.
    Spalding MD, Prigge ST (2010) Microbiol Mol Biol Rev 74:200–228PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Cronan JE (2016) Microbiol Mol Biol Rev 80:429–450PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Heinemann IU, Jahn M, Jahn D (2008) Arch Biochem Biophys 474:238–251PubMedCrossRefGoogle Scholar
  87. 87.
    Sagers RD, Gunsalus IC (1961) J Bacteriol 81:541–549PubMedPubMedCentralGoogle Scholar
  88. 88.
    Richert DA, Amberg R, Wilson M (1962) J Biol Chem 237:99–103PubMedGoogle Scholar
  89. 89.
    Kawasaki H, Sato T, Kikuchi G (1966) Biochem Biophys Res Commun 23:227–233PubMedCrossRefGoogle Scholar
  90. 90.
    Sato T, Kochi H, Motokawa Y, Kawasaki H, Kikuchi (1969) J Biochem 65:63–70PubMedGoogle Scholar
  91. 91.
    Kikuchi G, Motokawa Y, Yishida T, Hiraga K (2008) Proc Jpn Acad Ser B 84:246–263CrossRefGoogle Scholar
  92. 92.
    Douce R, Bourguignon J, Neuburger M, Rébeillé F (2001) Trends Plant Sci 6:167–176PubMedCrossRefGoogle Scholar
  93. 93.
    Okamura-Ikeda K, Hosaka H, Maita N, Fujiwara K, Yoshizawa AC, Nakagawa A, Taniguchi H (2010) J Biol Chem 285:18684–18692PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Williams OB, Morrow MB (1928) J Bacteriol 16:43–48PubMedPubMedCentralGoogle Scholar
  95. 95.
    Oppermann FB, Schmidt B, Steinbüchel A (1991) J Bacteriol 173:757–767PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Oppermann FB, Steinbüchel A (1994) J Bacteriol 176:469–485PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Krüger N, Oppermann FB, Lorenzl H, Steinbüchel A (1994) J Bacteriol 176:3614–3630PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Priefert H, Hein S, Krüger N, Zeh K, Schmidt B, Steinbüchel A (1991) J Bacteriol 173:4056–4071PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Huang M, Oppermann FB, Steinbüchel A (1994) FEMS Microbiol Lett 124:141–150PubMedCrossRefGoogle Scholar
  100. 100.
    Oppermann FB, Steinbüchel A, Schlegel HG (1988) FEMS Microbiol Lett 55:47–52CrossRefGoogle Scholar
  101. 101.
    Huang M, Oppermann-Sanio FB, Steinbüchel A (1999) J Bacteriol 181:3837–3841PubMedPubMedCentralGoogle Scholar
  102. 102.
    Payne KAP, Hough DW, Danson MJ (2010) FEBS Lett 584(6):1231–1234PubMedCrossRefGoogle Scholar
  103. 103.
    Personal communication Alexander Steinbüchel, Georg-August-Universität zu Göttingen (2018)Google Scholar
  104. 104.
    Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ (2011) Toxicol Sci 123:305–332PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
  106. 106.
  107. 107.
  108. 108.
    Marsh J (1836) Edinb New Philos J 21:229–236Google Scholar
  109. 109.
  110. 110.
    Nieuwland JA (1904) Some Reactions of Acetylene, PD thesis, University of Notre Dame (Notre Dame, Indiana)Google Scholar
  111. 111.
  112. 112.
    Gibaud S, Jaouen G (2010) Top Organomet Chem 32:1–20CrossRefGoogle Scholar
  113. 113.
    Stocken LA, Thompson RHS (1946) Biochem J 40:529–535PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Stocken LA, Thompson RHS (1946) Biochem J 40:535–548PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Searls RL, Peters JM, Sanadi DR (1961) J Biol Chem 236:2317–2322PubMedGoogle Scholar
  116. 116.
    Voet D, Voet JG (1994) Biochemie. VCH, Weinheim, p 511Google Scholar
  117. 117.
  118. 118.
    Thangavel S, Chen CH, Yih LH, Wang AS, Lin SY, Chen TC, Jan KY (2003) Chem Res Toxicol 16:409–414CrossRefGoogle Scholar
  119. 119.
    Peters RA, Stocken LA, Thompson RHS (1945) Nature 156:616–619PubMedCrossRefGoogle Scholar
  120. 120.
    Davis AR, Platteborze PL (2015) Therap Drug Manag Toxicol (American Association for Clinical Chemistry) 1:1–6Google Scholar
  121. 121.
    Berg J, Tymoczko JL, Stryer L (2007) Biochemistry, 6th edn. Freeman, New York, pp 494–495Google Scholar
  122. 122.
    Vilensky JA, Redman K (2003) Ann Emerg Med 41:378–383PubMedCrossRefGoogle Scholar
  123. 123.
    Koike M, Reed LJ, Carroll WR (1960) J Biol Chem 235:1924–1930PubMedGoogle Scholar
  124. 124.
    Koike M, Reed LJ, Carroll WR (1963) J Biol Chem 238:30–39PubMedGoogle Scholar
  125. 125.
    Reed LJ (1974) Acc Chem Res 7:40–46CrossRefGoogle Scholar
  126. 126.
    Reed LJ (1969) Curr Topics Cell Reg 1:233–251CrossRefGoogle Scholar
  127. 127.
    Wu X, Brooks BR, in Janecek M, Kral R (2016) Modern Electron Microscopy in Physical and Life Sciences, InTechOpen,  https://doi.org/10.5772/62085 Google Scholar
  128. 128.
    Izard T, Aevarsson A, Allen MD, Westphal AH, Perham RN, de Kok A, Hol WG (1999) PNAS 96:1240–1245PubMedCrossRefGoogle Scholar
  129. 129.
    Stoops JK, Cheng RH, Yazdi MA, Maeng CY, Schroeter JP, Klueppelberg U, Kolodziej SJ, Baker TS, Reed LJ (1997) J Biol Chem 272:5757–5764PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Yu X, Hiromasa Y, Tsen H, Stoops JK, Roche TE, Zhou ZH (2008) Structure 16:104–114PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Patel MS, Nemeria NS, Furey W, Jordan F (2014) J Biol Chem 289:16615–16623PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Garrett R, Grisham CM (2009) Biochemistry (4th International Student Edition). Cengage Learning Services, Belmont, pp 566–571Google Scholar
  133. 133.
    Nawa H, Brady WT, Koike M, Reed LJ (1960) J Am Chem Soc 82:896–903CrossRefGoogle Scholar
  134. 134.
    Perham RN (2000) Annu Rev Biochem 69:961–1004PubMedCrossRefGoogle Scholar
  135. 135.
  136. 136.
    Reche P, Perham RP (1999) EMBO J 18:2673–2682PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Cronan JA (2014) EcoSal Plus.  https://doi.org/10.1128/ecosalplus.esp-0001-2012
  138. 138.
    Quinn J (1997) Methods Enzymol 279:193–202PubMedCrossRefGoogle Scholar
  139. 139.
    Macherel D, Bourguignon J, Forest E, Faure M, Cohen-Addad C, Douce R (1996) Eur J Biochem 236:27–33PubMedCrossRefGoogle Scholar
  140. 140.
    Reed LJ, Leach FR, Koike M (1958) J Biol Chem 232:123–142PubMedPubMedCentralGoogle Scholar
  141. 141.
    Reed LJ, Koike M, Levitch ME, Leach FR (1958) J Biol Chem 232:143–158PubMedPubMedCentralGoogle Scholar
  142. 142.
    Koike M, Reed LJ (1960) J Biol Chem 235:1931–1938PubMedGoogle Scholar
  143. 143.
  144. 144.
    Morris TW, Reed KE, Cronan JE Jr (1994) J Biol Chem 269:16091–16100PubMedGoogle Scholar
  145. 145.
    Green DE, Morris TW, Green J, Cronan JE Jr, Guest JR (1995) Biochem J 309:853–862PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Martin N, Christensen QH, Mansilla MC, Cronan JE, de Mendoza D (2011) Mol Microbiol 80:335–349PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Kim DJ, Kim KH, Lee HH, Lee SJ, Ha JY, Yoon HJ, Suh SW (2005) J Biol Chem 280:38081–38089PubMedCrossRefGoogle Scholar
  148. 148.
    Fujiwara K, Toma S, Okamura-Ikeda K, Motokawa Y, Nakagawa A, Taniguchi H (2005) J Biol Chem 280:33645–33651PubMedCrossRefGoogle Scholar
  149. 149.
    Jiang Y, Cronan JE (2005) J Biol Chem 280:2244–2256PubMedCrossRefGoogle Scholar
  150. 150.
    Mathias RA, Greco TM, Oberstein A, Budayeva HG, Chakrabarti R, Rowland EA, Kang Y, Shenk T, Cristea IM (2014) Cell 159:1615–1625PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
  152. 152.
    Rochette L, Ghibu S, Richard C, Zeller M, Cottin Y, Vergely C (2013) Mol Nutr Food Res 57:114–125PubMedCrossRefGoogle Scholar
  153. 153.
    Moini H, Packer L, Saris NE (2002) Toxicol Appl Pharmacol 182:84–90PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Reed KE, Morris TW, Cronan JE Jr (1994) Proc Natl Acad Sci USA 91:3720–3724PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Morris TW, Reed KE, Cronan JE Jr (1995) J Bacteriol 177:1–10PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Jordan SW, Cronan JE Jr (1997) J Biol Chem 272:17903–17906PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Jordan SW, Cronan JE Jr (2003) J Bacteriol 185:1582–1589PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Beld J, Lee DJ, Burkart MD (2015) Mol BioSyst 11:38–59PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Cao X, Hong Y, Zhu L, Hu Y, Cronan JE (2018) PNAS 115:647–655PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Parry RJ (1977) J Am Chem Soc 99:6464–6466CrossRefGoogle Scholar
  161. 161.
    Parry RJ (1978) J Am Chem Soc 100:5243–5244CrossRefGoogle Scholar
  162. 162.
    White RH (1980) Biochemistry 19:9–15PubMedCrossRefGoogle Scholar
  163. 163.
    White RH (1980) Biochemistry 19:15–19PubMedCrossRefGoogle Scholar
  164. 164.
    White RH (1980) J Am Chem Soc 102:6605–6607CrossRefGoogle Scholar
  165. 165.
    Miller JR, Busby RW, Jordan SW, Cheek J, Henshaw TF, Ashley GW, Broderick JB, Cronan JE Jr, Marletta MA (2000) Biochemistry 39:15166–15178PubMedCrossRefGoogle Scholar
  166. 166.
    Zhao X, Miller JR, Jiang Y, Marletta MA, Cronan JE (2003) Chem Biol 10:1293–1302PubMedCrossRefGoogle Scholar
  167. 167.
    Harmer JE, Hiscox MJ, Dinis PC, Fox SJ, Iliopoulos A, Hussey JE, Sandy J, Van Beek FT, Essex JW, Roach PL (2014) Biochem J 464:123–133PubMedCrossRefGoogle Scholar
  168. 168.
    McLaughlin MI, Lanz ND, Goldman PJ, Lee KH, Booker SJ, Drennan CL (2016) PNAS 113:9446–9450PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Dong G, Cao L, Ryde U (2018) J Biol Inorg Chem 23:221–229PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Choi-Rhee E, Cronan JE (2005) Chem Biol 12:461–468PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Farrar CE, Siu KK, Howell PL, Jarrett JT (2010) Biochemistry 49:9985–9996PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Liao HH, MacFarlan SC (2002) WO 02/085293 (Cargill Incorporated)Google Scholar
  173. 173.
    Franke E, Dassler T (2002) DE 10258127 (Consortium für elektrochemische Industrie GmbH)Google Scholar
  174. 174.
    Jayakar SS, Singhal RS (2013) Bioprocess Biosyst Eng 36:1063–1070PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Yadav JS, Mysorekar SV, Garyali K (1990) J Sci Ind Res 49:400–409Google Scholar
  176. 176.
    Acker DS (1956) US 2752373 (EI du Pont de Nemours & Co)Google Scholar
  177. 177.
    Acker DS, Todd CW (1956) US 2752374 (EI du Pont de Nemours & Co)Google Scholar
  178. 178.
    Segre A, Viterbo R, Parisi G (1957) J Am Chem Soc 79:3503–3505CrossRefGoogle Scholar
  179. 179.
    Segre A, Viterbo R (1961) US 2993056 (Farmochimica Cutolo-Calosi SpA)Google Scholar
  180. 180.
    Stork G, Terrell R, Szmuszkovicz J (1954) J Am Chem Soc 76:2029–2030CrossRefGoogle Scholar
  181. 181.
    Braude EA, Linstead RP, Woolridge KRH (1955) Chem Ind 508–508Google Scholar
  182. 182.
    Braude EA, Linstead RP, Woolridge KRH (1956) J Chem Soc 3074–3075Google Scholar
  183. 183.
    Jones WH (1957) US 2806048 (Merck&Co)Google Scholar
  184. 184.
    Elliott JD, Steele J, Johnson WS (1985) Tetrahedron Lett 26:2535–2538CrossRefGoogle Scholar
  185. 185.
    Gopalan AS, Jacobs HK (1989) Tetrahedron Lett 30:5705–5708CrossRefGoogle Scholar
  186. 186.
    Gopalan AS, Jacobs HK (1990) J Chem Soc Perkin Trans I:1897–1900CrossRefGoogle Scholar
  187. 187.
    Adger B, Bes MT, Grogan G, McCague R, Pedragosa-Moreau S, Roberts SM, Villa R, Wan PWH, Willetts AJ (1995) J Chem Soc Chem Commun 1563–1564Google Scholar
  188. 188.
    Adger B, Bes MT, Grogan G, McCague R, Pedragosa-Moreau S, Roberts SM, Villa R, Wan PWH, Willetts AJ (1997) Bioorg Med Chem 5:253–261PubMedCrossRefGoogle Scholar
  189. 189.
    Zhong G, Yu Y (2004) Org Lett 6:1637–1639PubMedCrossRefGoogle Scholar
  190. 190.
    Panchgalle SP, Jogdand GF, Chavan SP, Kalkote UR (2010) Tetrahedron Lett 51:3587–3589CrossRefGoogle Scholar
  191. 191.
    Wass B (ed) (not applicable) Guide to antioxidants, supplements & vitamins. PediaPress, pp 55–67Google Scholar
  192. 192.
    Resolution with R-(+)-α-methylbenzylamine: Blaschke G, Scheidemantel U, Bethge H, Möller R, Beisswenger T, Huthmacher K (1994) US 5281722 (Degussa)Google Scholar
  193. 193.
    Bethge H, Möller R, Beisswenger T Huthmacher K, Blaschke G, Scheidemantel U (1996) DE 4137773 (Degussa)Google Scholar
  194. 194.
    Racemization by heating to 180°C in toluene: Bethge H, Möller R, Sator G, Merget S, Beisswenger T (1996) EP 0694542 (Asta Medica Aktiengesellschaft)Google Scholar
  195. 195.
    Villani F, Nardi A, Salvi A, Falabella G (2003) Resolution with R-(+)-α-methylbenzylamine. US 2003/0187279 (Laboratorio Chimico Internazionale SpA)Google Scholar
  196. 196.
    Villani F, Nardi A, Salvi A, Falabella G (2005) Resolution of 6,8-dichlorooctanoic acid with S-(-)-α-methylbenzylamine, followed by sulfurization delivers R-(+)-a-lipoic acid. US 6864374 (Laboratorio Chimico Internazionale SpA)Google Scholar
  197. 197.
    Zou Zhenrong (2013) Racemization by heating and resolution with R-(+)-α-methylbenzylamine. CN102442994 (Jiangsu Tohope Pharmaceutical Co)Google Scholar
  198. 198.
    Paust J, Eckes P, Siegel W, Balkenhohl F, Dobler W, Hüllmann M (1995) US 5380920 (BASF)Google Scholar
  199. 199.
    Balkenhohl F, Paust J (1992) DE 4037440 (BASF)Google Scholar
  200. 200.
    Bringmann G, Herzberg D, Adam G, Balkenhohl F, Paust J (1999) Z Naturforsch B 54:655–661CrossRefGoogle Scholar
  201. 201.
    Herzberg D (1996) Diploma Thesis, Bayerische Julius-Maximilians-Universität WürzburgGoogle Scholar
  202. 202.
    Klatt MJ, Niebel M, Paust J (2006) US 7109362 (BASF)Google Scholar
  203. 203.
    Giray G, Huthmacher K, Kleemann A, Lied T (1986) DE 3512911 (Degussa)Google Scholar
  204. 204.
    Sutherland IO, Page PCB, Rayner CM (1988) US 4772727 (Degussa)Google Scholar
  205. 205.
    Page PCB, Rayner CM, Sutherland IO (1990) J Chem Soc Perkin Trans I:1615–1618CrossRefGoogle Scholar
  206. 206.
    Rosenberg HR, Culik R (1959) Arch Biochem Biophys 8:86–93CrossRefGoogle Scholar
  207. 207.
  208. 208.
    Ziegle D, Reljanovic M, Mehnert H, Gries FA (1999) Exp Clin Endocrinol Diabetes 107:421–430CrossRefGoogle Scholar
  209. 209.
    Liu J (2008) Neurochem Res 33:194–203PubMedCrossRefGoogle Scholar
  210. 210.
    Packer L, Tritschler HJ, Wessel K (1997) Free Radic Biol Med 22:359–378PubMedCrossRefGoogle Scholar
  211. 211.
    Holmquist L, Stuchbury G, Berbaum K, Muscat S, Young S, Hager K, Engel J, Münch G (2007) Pharmacol Ther 113:154–164PubMedCrossRefGoogle Scholar
  212. 212.
    Hager K, Kenklies M, McAfoose J, Engel J, Münch G (2007) J Neural Transm Suppl 72:189–193Google Scholar
  213. 213.
    Maczurek A, Hager K, Kenklies M, Sharman M, Martins R, Engel J, Carlson DA, Münch G (2008) Adv Drug Deliv Rev 60:1463–1470PubMedCrossRefGoogle Scholar
  214. 214.
    Magis D, Ambrosini A, Sándor P, Jacquy J, Laloux P, Schoenen J (2007) Headache 47:52–57PubMedCrossRefGoogle Scholar
  215. 215.
    Yadav V, Marracci G, Lovera J, Woodward W, Bogardus K, Marquardt W, Shinto L, Morris C, Bourdette D (2005) Mult Scler 11:159–165PubMedCrossRefGoogle Scholar
  216. 216.
    Salinthone S, Yadav V, Bourdette DN, Carr DW (2008) Endocr Metab Immune Disord Drug Targets 8:132–142PubMedCrossRefGoogle Scholar
  217. 217.
    Yadav V, Marracci GH, Munar MY, Cherala G, Stuber LE, Alvarez L, Shinto L, Koop DR, Bourdette DN (2010) Mult Scler 16:387–389PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Gregus Z, Stein AF, Varga F, Klaassen CD (1992) Toxicol Appl Pharmacol 114:88–96PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Ruprecht-Karls-Universität HeidelbergHeidelbergGermany
  2. 2.Ruprecht-Karls-Universität Heidelberg; BASF SELudwigshafen am RheinGermany

Personalised recommendations