Skip to main content
Log in

Biofuel Impact on Diesel Engine After-Treatment: Deactivation Mechanisms and Soot Reactivity

  • Special Article from the ETH conference 2017
  • Published:
Emission Control Science and Technology Aims and scope Submit manuscript

Abstract

Since 2014 (Euro VI), heavy goods vehicles must be equipped with a complex exhaust gas post-treatment system including a diesel oxidation catalyst (DOC), a catalyst for the selective reduction of NOx (SCR), and a diesel particulate filter (DPF), with a required durability of 7 years or 700,000 km. Consequently, when biodiesel is used, especially pure biodiesel (B100), catalysts will be subjected over 700,000 km to kilogrammes of inorganic elements (Na, K, and P), even if they are limited to a few ppm in biodiesel fuel. The durability of the catalytic exhaust system is therefore questionable. This issue is of major concern to vehicle manufacturers. This study aims to make a detailed investigation of the impact of biodiesel use on the durability of the existing Euro VI catalytic systems, with a special focus on deactivation through poisoning for DOC and SCR catalysts, and on the physics and chemistry of particles and their reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Colombo, M., Nova, I., Tronconi, E.: A comparative study of the NH3-SCR reactions over a Cu-zeolite and a Fe-zeolite catalyst. Catal. Today. 151, 223–230 (2010)

    Article  Google Scholar 

  2. Ottinger, N., Nguyen, K., Bunting, B., Toops, T., Howe, J.: Effects of rapid high temperature cyclic aging on a fully-formulated lean NOx trap catalyst. SAE Int. J. Fuels Lubr. 2(1), 217–228 (2009)

    Article  Google Scholar 

  3. Choi, B., Liu, B., Jeong, J.: Effects of hydrothermal aging on SiC-DPF with metal oxide ash and alkali metals. J. Ind. Eng. Chem. 15, 707–715 (2009)

    Article  Google Scholar 

  4. Cavataio, G., Jen, H., Girard, J., Dobson, D., Warner, J.R., Lambert, C.K.: Impact and prevention of ultra-low contamination of platinum group metals on SCR catalysts due to DOC design. SAE Int. J. Fuels Lubr. 2(1), 204–216 (2009)

    Article  Google Scholar 

  5. Theis, J., Ura, J., McCabe, R.: The effects of sulfur poisoning and desulfation temperature on the NOx conversion of LNT+SCR Systems for diesel applications. SAE Int. J. Fuels Lubr. 3(1), 1–15 (2010)

    Article  Google Scholar 

  6. Kamasamudram, K., Currier, N., Szailer, T., Yezerets, A.: Why Cu- and Fe-zeolite SCR catalysts behave differently at low temperatures. SAE Int. J. Fuels Lubr. 3(1), 664–672 (2010)

    Article  Google Scholar 

  7. Epling, W.S., Campbell, L.E., Yezerets, A., Currier, N.W., Parks II, J.E.: Overview of the fundamental reactions and degradation mechanisms of NOx storage/reduction catalysts. Catal. Rev. 46, 163–245 (2005)

    Article  Google Scholar 

  8. Benramdhane, S., Millet, C.N., Jeudy, E., Lavy, J., Blasin Aubé, V., Daturi, M.: Impact of thermal and vehicle aging on the structure and functionalities of a lean NOx-trap. Catal. Today. 176, 56–62 (2011)

    Article  Google Scholar 

  9. Le Phuc, N., Corbos, E.C., Courtois, X., Can, F., Marecot, P., Duprez, D.: NOx storage and reduction properties of Pt/CexZr1−xO2 mixed oxides: sulfur resistance and regeneration, and ammonia formation. Appl. Catal. B. 93, 12–21 (2009)

    Article  Google Scholar 

  10. Szybist, J.P., Song, J., Alam, M., Boehman, A.L.: Biodiesel combustion, emissions and emission control. Fuel Process. Technol. 88, 679–691 (2007)

    Article  Google Scholar 

  11. Graboski, M.S., McCormick, R.L.: Combustion of fat and vegetable oil derived fuels in diesel engines. Prog. Energy Combust. Sci. 24, 125–164 (1998)

    Article  Google Scholar 

  12. Szybist, J.P., Boehman, A.L., Haworth, D.C., Koga, H.: Premixed ignition behavior of alternative diesel fuel-relevant compounds in a motored engine experiment. Combust. Flame. 149, 112–128 (2007)

    Article  Google Scholar 

  13. Wang, X., Cheung, C.S., Di, Y., Huang, Z.: Diesel engine gaseous and particle emissions fueled with diesel–oxygenate blends. Fuel. 94, 317–323 (2012)

    Article  Google Scholar 

  14. Millo, F., Vezza, D.S., Vlachos, T., De Filippo, A., Ciaravino, C., Russo, N., Fino, D.: Particle number and size emissions from a small displacement automotive diesel engine: bioderived vs conventional fossil fuels. I&EC. 51, 7565–7572 (2012)

    Google Scholar 

  15. Tatur, M., Nanjundaswamy, H., Tomazic, D., Thornton, M., McCormick, R.L.: Biodiesel effects on U.S. light-duty tier 2 engine and emission control systems—part 2. SAE Int. J. Fuels Lubr. 2(1), 88–103 (2009)

    Article  Google Scholar 

  16. Fraer, R., Dinh, H., Proc, K., McCormick, R., Chandler, K., Buchholz, B.: Operating Experience and Teardown Analysis for Engines Operated on Biodiesel Blends (B20). SAE Technical Paper 2005–01-3641 (2005)

  17. Ballesteros, R., Monedero, E., Guillen-Flores, J.: Determination of aldehydes and ketones with high atmospheric reactivity on diesel exhaust using a biofuel from animal fats. Atmos. Environ. 45, 2690–2698 (2011)

    Article  Google Scholar 

  18. Cosseron, A., Tschamber, V., Coniglio, L., Daou, T.J.: Study of non-regulated exhaust emissions using biodiesels and impact on a 4 way catalyst efficiency. SAE Technical Paper 2011–24-0194 (2011)

  19. Prasomsri, T., To, A.T., Crossley, S., Alvarez, W.E., Resasco, D.E.: Catalytic conversion of anisole over HY and HZSM-5 zeolites in the presence of different hydrocarbon mixtures. Appl. Catal. B. 106, 214–211 (2011)

    Google Scholar 

  20. Adouane, D., Capela, S., Da Costa, P.: On the efficiency of NH3–SCR catalysts for heavy duty vehicles running on compressed natural gas in synthetic gas bench scale. Top. Catal. 56, 45–49 (2013)

    Article  Google Scholar 

  21. Joubert, E., Courtois, X., Marécot, P., Duprez, D.: NO reduction by hydrocarbons and oxygenated compounds in O2 excess over a Pt/Al2O3 catalyst: a comparative study of the efficiency of different reducers (hydrocarbons and oxygenated compounds). Appl. Catal. B. 64, 103–110 (2006)

    Article  Google Scholar 

  22. Can, F., Travert, A., Ruaux, V., Gilson, J.P., Maugé, F., Hu, R., Wormsbecher, R.F.: FCC gasoline sulfur reduction additives: mechanism and active sites. J. Catal. 249, 79–92 (2007)

    Article  Google Scholar 

  23. Kanerva, T., Kroger, V., Rahkamaa-Tolonen, K., Vippola, M., Lepisto, T., Keiski, R.L.: Structural changes in air aged and poisoned diesel catalysts. Top. Catal. 45, 137–142 (2007)

    Article  Google Scholar 

  24. Kroger, V., Kanerva, T., Lassi, U., Rahkamaa-Tolonen, K., Vippola, M., Keiski, R.L.: Characterization of phosphorus poisoning on diesel exhaust gas catalyst components containing oxide and Pt. Top. Catal. 45, 153–157 (2007)

    Article  Google Scholar 

  25. Williams, F.L., Baron, K.: Lead, sulfur and phosphorus interactions with platinum and palladium metal foils. J. Catal. 40, 108–116 (1975)

    Article  Google Scholar 

  26. Matam, S.K., Kondratenko, E.V., Aguirre, M.H., Hug, P., Rentsch, D., Winkler, A., Weidenkaff, A., Ferri, D.: The impact of aging environment on the evolution of Al2O3 supported Pt nanoparticles and their NO oxidation activity. Appl. Catal. B. 129, 214–224 (2013)

    Article  Google Scholar 

  27. Hoekman, S.K., Robbins, C.: Review of the effects of biodiesel on NOx emissions. Fuel Proc. Technol. 96, 237–249 (2012)

    Article  Google Scholar 

  28. Xue, J., Grift, T.E., Hansen, A.C.: Effect of biodiesel on engine performances and emissions. Renew Sust. Energ. Rev. 15, 1098–1116 (2011)

    Article  Google Scholar 

  29. Apostolescu, N., Geiger, B., Hizbullah, K., Jan, M.T., Kureti, S., Reichert, D., Schott, F., Weisweiler, W.: Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts. Appl. Catal. B. 62, 104–114 (2006)

    Article  Google Scholar 

  30. Luo, J.Y., Hou, X., Wijayakoon, P., Schmieg, S.J., Li, W., Epling, W.S.: Spatially resolving SCR reactions over a Fe/zeolite catalyst. Appl. Catal. B. 102, 110–119 (2011)

    Article  Google Scholar 

  31. Ozkan, U.S., Cai, Y., Kumthekar, M.W.: Investigation of the reaction pathways in selective catalytic reduction of NO with NH3 over V2O5 catalysts: isotopic labeling studies using 18O2, 15NH3, 15NO, and 15N18O. J. Catal. 149, 390–403 (1994)

    Article  Google Scholar 

  32. Odenbrand, C.U.I., Bahamonde, A., Avila, P., Blanco, J.: Kinetic study of the selective reduction of nitric oxide over vanadia—tungsta—titania/sepiolite catalyst. Appl. Catal. B. 5, 117–131 (1994)

    Article  Google Scholar 

  33. Ramis, G., Busca, G., Bregani, F., Forzatti, P.: Fourier transform-infrared study of the adsorption and coadsorption of nitric oxide, nitrogen dioxide and ammonia on vanadia-titania and mechanism of selective catalytic reduction. Appl. Catal. 64, 259–278 (1990)

    Article  Google Scholar 

  34. Kiel, J.H.A., Edelaar, A.C.S., Prins, W., Van Swaaij, W.P.M.: Performance of silica-supported copper oxide sorbents for SOx/NOx-removal from flue gas: II. Selective catalytic reduction of nitric oxide by ammonia. Appl. Catal. B. 1, 41–60 (1992)

    Article  Google Scholar 

  35. Bosch, H., Janssen, F.: Formation and control of nitrogen oxides. Catal. Today. 2, 369–379 (1988)

    Article  Google Scholar 

  36. Skalza, K., Miller, J.S., Ledakowicz, S.: Trends in NOx abatement: a review. Sci. Total Environ. 408, 3976–3989 (2010)

    Article  Google Scholar 

  37. Wan, Q., Duan, L., Li, J., Chen, L., He, K., Hao, J.: Deactivation performance and mechanism of alkali (earth) metals on V2O5-WO3/TiO2 catalyst for oxidation of gaseous elemental mercury in simulated coal-fired flue gas. Catal. Today. 175, 189–195 (2011)

    Article  Google Scholar 

  38. Larsson, A.C., Einvall, J., Andersson, A., Sanati, M.: Physical and chemical characterisation of potassium deactivation of a SCR catalyst for biomass combustion. Top. Catal. 45, 149–152 (2007)

    Article  Google Scholar 

  39. Yu, Y.K., He, C., Chen, J.S., Meng, X.R.: Deactivation mechanism of de-NOx catalyst (V2O5-WO3/TiO2) used in coal fired power plant. J. Fuel Chem. Technol. 40, 1359–1365 (2012)

    Article  Google Scholar 

  40. Zheng, Y., Jensen, A.D., Johnsson, J.E., Thøgersen, J.R.: Deactivation of V2O5-WO3-TiO2 SCR catalyst at biomass fired power plants: elucidation of mechanisms by lab- and pilot-scale experiments. Appl. Catal. B. 83, 186–194 (2008)

    Article  Google Scholar 

  41. Putluru, S.S.R., Kristensen, S.B., Due-Hansen, J., Riisager, A.: Alternative alkali resistant deNOx catalysts. Catal. Today. 184, 192–196 (2012)

    Article  Google Scholar 

  42. Nova, I., Dall’Acqua, L., Lietti, L., Giamello, E., Forzatti, P.: Study of thermal deactivation of a de-NOx commercial catalyst. Appl. Catal. B. 35, 31–42 (2001)

    Article  Google Scholar 

  43. Chapmann, D.M.: US patent 2011/0138789 A1 (2011)

  44. Blanchard, G., Rousseau, S., Mazri, L., Lizarraga, L., Giroir-Fendler, A., D’anna, B., Vernoux, P.: Particle filter including a catalytic phase. European Patent 1302 11708906.0–2113 (2011)

  45. Park, J.H., Park, H.J., Baik, J.H., Nam, I.S., Shin, C.H., Lee, J.H., Cho, B.K., Oh, S.H.: Hydrothermal stability of CuZSM5 catalyst in reducing NO by NH3 for the urea selective catalytic reduction process. J. Catal. 240, 47–57 (2006)

    Article  Google Scholar 

  46. Sullivan, J.A., Keane, O.: The role of Bronstead acidity in poisoning the SCR-urea reaction over FeZSM-5 catalysts. Appl. Catal. B. 61, 244–252 (2005)

    Article  Google Scholar 

  47. Guan, B., Zhan, R., Lin, H., Huang, Z.: Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust. Appl. Therm. Eng. 66, 395–414 (2014)

    Article  Google Scholar 

  48. Brookhear, D.W., Nguyen, K., Toops, T.J., Bunting, B.G., Rorh, W.F., Howe, J.: Investigation of the effects of biodiesel-based Na on emissions control components. Catal. Today. 184, 205–218 (2012)

    Article  Google Scholar 

  49. Agarwal, A.K., Gupta, T., Kothari, A.: Particulate emissions from biodiesel vs diesel fuelled compression ignition engine. Renew. Sust. Energ. Rev. 15, 3278–3300 (2011)

    Article  Google Scholar 

  50. Sharp, C., Howell, S., and Jobe, J.: The effect of biodiesel fuels on transient emissions from modern diesel engines, part I regulated emissions and performance. SAE Technical Paper 2000–01-1967 (2000)

  51. Sappok, A., Wong, V.: Impact of biodiesel on ash emissions and lubricant properties affecting fuel economy and engine wear: comparison with conventional diesel fuel. SAE Int. J. Fuels Lubr. 1(1), 731–747 (2009)

    Article  Google Scholar 

  52. Williams, A., McCormick, R., Luecke, J., Brezny, R., Geisselmann, A., Voss, K., Hallstrom, K., Leustek, M., Parsosns, J., Abi-Akar, H.: Impact of biodiesel impurities on the performance and durability of DOC, DPF and SCR technologies. SAE Int. J. Fuels Lubr. 4(1), 110–124 (2011)

    Article  Google Scholar 

  53. Lamharess, N.: Ph-D Thesis, University Pierre and Marie Curie, Paris (2012)

  54. Salamanca, M., Mondragón, F., Ramiro Agudelo, J., Benjumea, P., Santamaría, A.: Variations in the chemical composition and morphology of soot induced by the unsaturation degree of biodiesel and a biodiesel blend. Combust. Flame. 159, 1100–1108 (2012)

    Article  Google Scholar 

  55. Vander Wal, R.L., Mueller, C.J.: Initial investigation of effects of fuel oxygenation on nanostructure of soot from a direct-injection diesel engine. Energy Fuel. 20(6), 2364–2369 (2006)

    Article  Google Scholar 

  56. Christou, S.Y., Birgersson, H., Efstathiou, A.M.: Reactivation of severely aged commercial three-way catalysts by washing with weak EDTA and oxalic acid solutions. Appl. Catal. B Environ. 71, 185–198 (2007)

    Article  Google Scholar 

  57. Othman, M.R., Mustafa, N.N.N., Ahmad, A.L.: Effect of thermal treatment on the microstructure of sol-gel derived porous alumina modified platinum. Microporous Mesoporous Mater. 91, 268–275 (2006)

    Article  Google Scholar 

  58. Hauff, K., Tuttlies, U., Eigenberger, G., Nieken, U.: Platinum oxide formation and reduction during NO oxidation on a diesel oxidation catalyst—experimental results. Appl. Catal. B Environ. 123, 107–124, 116 (2012)

  59. Wang, D., Zhang, L., Li, J., Kamasamudram, K., Epling, W.S.: NH3-SCR over Cu/SAPO-34–zeolite acidity and Cu structure changes as a function of Cu loading. Catal. Today. 231, 64–74 (2014)

    Article  Google Scholar 

  60. Ma, L., Cheng, Y., Cavataio, G., McCabe, R.W., Fu, L., Li, J.: Characterization of commercial Cu-SSZ-13 and Cu-SAPO-34 catalysts with hydrothermal treatment for NH3-SCR of NOx in diesel exhaust. Chem. Eng. J. 225, 323–330 (2013)

    Article  Google Scholar 

  61. Kwak, J.H., Tonkyn, R.G., Kim, D.H., Szanyi, J., Peden, C.H.F.: Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3. J. Catal. 275, 187–190 (2010)

    Article  Google Scholar 

  62. Kim, Y.J., Lee, J.K., Min, K.M., Hong, S.B., Nam, I.S., Cho, B.K.: Hydrothermal stability of CuSSZ13 for reducing NOx by NH3. J. Catal. 311, 447–457 (2014)

    Article  Google Scholar 

  63. Brandenberger, S., Kröcher, O., Tissler, A., Althoff, R.: The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts. Catal. Rev. 50, 492–531 (2008)

    Article  Google Scholar 

  64. Metkar, P.S., Salazar, N., Muncrief, R., Balakotaiah, V., Harold, M.P.: Selective catalytic reduction of NO with NH3 on iron zeolite monolithic catalysts: steady-state and transient kinetics. Appl. Catal. B. 104, 110–126 (2011)

    Article  Google Scholar 

  65. Sjövall, H., Olsson, L., Fridell, E., Blint, R.J.: Selective catalytic reduction of NOx with NH3 over Cu-ZSM-5—the effect of changing the gas composition. Appl. Catal. B. 64, 180–188 (2006)

    Article  Google Scholar 

  66. Trombetta, M., Busca, G., Rossini, S., Piccoli, V., Cornaro, U., Guercio, A., Catani, R., Willey, R.J.: FT-IR studies on light olefin skeletal isomerization catalysis: III. Surface acidity and activity of amorphous and crystalline catalysts belonging to the SiO2–Al2O3 system. J. Catal. 179, 581–596 (1998)

    Article  Google Scholar 

  67. Wichterlová, B., Tvarůžková, Z., Sobalík, Z., Sarv, P.: Determination and properties of acid sites in H-ferrierite: a comparison of ferrierite and MFI structures. Microporous Mesoporous Mater. 24, 223–233 (1998)

    Article  Google Scholar 

  68. Leistner, K., Mihai, O., Wijayanti, K., Kumar, A., Kamasamudram, K., Currier, N.W., Yezerets, A., Olsson, L.: Comparison of Cu/BEA, Cu/SSZ-13 and Cu/SAPO-34 for ammonia-SCR reactions. Catal. Today. 258, 49–55 (2015)

    Article  Google Scholar 

  69. Sepúlveda, C., Delgado, L., García, R., Melendrez, M., Fierro, J.L.G., Ghampson, I.T., Escalona, N.: Effect of phosphorus on the activity of Cu/SiO2 catalysts in the hydrogenolysis of glycerol. Catal. Today. 279, 217–223 (2017)

    Article  Google Scholar 

  70. Mamontov, G.V., Magaev, O.V., Knyazev, A.S., Vodyankina, O.V.: Influence of phosphate addition on activity of Ag and Cu catalysts for partial oxidation of alcohols. Catal. Today. 203, 122–126 (2013)

    Article  Google Scholar 

  71. Henriques, C., Ribeiro, M.F., Abreu, C., Murphy, D.M., Poignant, F., Saussey, J., Lavalley, J.C.: An FT-IR study of NO adsorption over Cu-exchanged MFI catalysts: effect of Si/Al ratio, copper loading and catalyst pre-treatment. Appl. Catal. B. 16, 79–95 (1998)

    Article  Google Scholar 

  72. Hadjiivanov, K.I.: Identification of neutral and charged NxOy surface species by IR spectroscopy. Catal. Rev. 42, 71–144 (2000)

    Article  Google Scholar 

  73. De Ménorval, B., Ayrault, P., Gnep, N.S., Guisnet, M.: Mechanism of n-butene skeletal isomerization over HFER zeolites: a new proposal. J. Catal. 230, 38–51 (2005)

    Article  Google Scholar 

  74. Lamharess, N., Millet, C.N., Starck, L., Jeudy, E., Lavy, J., Da Costa, P.: Catalysed diesel particulate filter: study of the reactivity of soot arising from biodiesel combustion. Catal. Today. 176, 219–224 (2011)

    Article  Google Scholar 

  75. Cosseron, A.-F.: Ph-D Thesis, University Haute Alsace, Mulhouse (2012)

  76. Song, J., Alam, M., Boehman, A.L., Kim, U.: Examination of the oxidation behavior of biodiesel soot. Combust. Flame. 146(4), 589–604 (2006)

    Article  Google Scholar 

  77. Jung, H., Kittelson, D.B., Zachariah, M.R.: Characteristics of SME biodiesel-fueled diesel particle emissions and the kinetics of oxidation. Environ. Sci. Technol. 45(24), 10337–10343 (2006)

    Google Scholar 

  78. Kashif, M., Bonnety, J., Guibert, P., Morin, C., Legros, G.: Soot volume fraction fields in unsteady axis-symmetric flames by continuous laser extinction technique. Opt. Express. 20, 28742–28751 (2012)

    Article  Google Scholar 

  79. Kashif, M., Guibert, P., Bonnety, J., Legros, G.: Sooting tendencies of primary reference fuels in atmospheric laminar diffusion flames burning into vitiated air. Combust. Flame. 161, 1575–1586 (2014)

    Article  Google Scholar 

  80. Santoro, R.J., Semerjian, H.G., Dobbins, R.A.: Soot particle measurements in diffusion flames. Combust. Flame. 51, 203–218 (1983)

    Article  Google Scholar 

  81. Abboud, J., Schobing, J., Legros, G., Bonnety, J., Tschamber, V., Brillard, A., Leyssens, G., Lauga, V., Iojoiu, E.E., Da Costa, P.: Impacts of oxygenated compounds concentration on sooting propensities and soot oxidative reactivity: application to diesel and biodiesel surrogates. Fuel. 193, 241–253 (2017)

    Article  Google Scholar 

  82. Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., Pöschl, U.: Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon. 43, 1731–1742 (2005)

    Article  Google Scholar 

  83. Strzelec, A., Wal, R.L.V., Thompson, T.N., Toops, T.J., Daw, C.S.: NO2 oxidation reactivity and burning mode of diesel particulates. Top. Catal. 59, 686–694 (2016)

    Article  Google Scholar 

  84. Schobing, J., Tschamber, V., Brillard, A., Leyssens, G.: Impact of Biodiesel impurities on carbon oxidation in passive regeneration conditions: Influence of the alkali metals. Submitted

  85. Stanmore, B.R., Tschamber, V., Brilhac, J.-F.: Oxidation of carbon by NOx, with particular reference to NO2 and N2O. Fuel. 87, 131–146 (2008)

    Article  Google Scholar 

  86. Matarrese, R., Castoldi, L., Lietti, L.: Oxidation of model soot by NO2 and O2 in the presence of water vapor. Chem. Eng. Sci. 173, 560–569 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the French National Agency (ANR) for Research for its financial support (Appibio Project, Ref. ANR-14-CE22-0003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Can or X. Courtois.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iojoiu, E., Lauga, V., Abboud, J. et al. Biofuel Impact on Diesel Engine After-Treatment: Deactivation Mechanisms and Soot Reactivity. Emiss. Control Sci. Technol. 4, 15–32 (2018). https://doi.org/10.1007/s40825-017-0079-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40825-017-0079-x

Keywords

Navigation