Eurasian Economic Review

, Volume 7, Issue 2, pp 215–230 | Cite as

Value at risk (VaR) analysis for fat tails and long memory in returns

Original Paper
  • 183 Downloads

Abstract

In this study, different value at risk models (VaR), which are used to measure downside investment risk, have been analyzed under different methods and stylized facts of financial time series. Downside investment risk of a single asset and of a hypothetical portfolio have first been measured by conventional VaR models (Parametrical VaR, Historical VaR, Historical Simulation VaR and Monte Carlo Simulation VaR) and then by alternative simulation models that consider fat tails (Alpha-Stable Simulation VaR) in return distributions and long memory in returns (Long Memory Simulation VaR). Empirical findings and the Duration Based Backtesting procedure indicate that the largest VaR value is obtained under Long Memory Simulation VaR that is based on the long memory in returns. This result is consistent with the findings of Mandelbrot’s various studies.

Keywords

Value at risk Alpha stable distributions Long memory Backtesting Turkish stock market 

JEL Classification

C14 C22 F30 

References

  1. Abry, P., & Veitch, D. (1998). Wavelet analysis of long-range-dependent traffic. IEEE Transactions on Information Theory, 44(1), 2–15.CrossRefGoogle Scholar
  2. Akdugan, U., & Akin, Y.K. (2013). Parametrik riske maruz deger hesaplamasinda volatilitenin modellenmesi: Turkiye’de emeklilik yatirim fonlari uzerine bir uygulama (Volatility modelling in parametric value at risk calculation: an application on pension funds in Turkey). International Conference on Eurasian Economies, St. Petersburg.Google Scholar
  3. Aktas, O., & Sjostrand, M. (2011). Cornishfisher expansion and value-at-risk method in application to risk management of large portfolios. Technical report, IDE1112, 1–94.Google Scholar
  4. Altayligil, Y. B. (2008). Graw ve Ewma ile riske maruz deger: altin getirisi icin bir uygulama (Value at risk with Graw and Ewma: an application for gold returns). Sosyal Bilimler Dergisi, 1, 33–41.Google Scholar
  5. Arik, A., Bulut, B., & Sucu, M. (2013). Finansal risklerin uc deger kurami ile olculmesi (Measuring financial risks with extreme value theory). Bilim Teknoloji Dergisi A-Uygulamali Bilimler ve Muhendislik, 14(2), 119–134.Google Scholar
  6. Bachelier, L. (1900). Théorie de la speculation. Annales Scientifiques de L’École Normale Supérieure, 17, 21–86 (English translation by A. J. Boness (1964) In P. H. Cootner (Ed.), The random character of stock market prices (pp. 17–75). Cambridge: MIT Press).Google Scholar
  7. Bostanci, A., & Korkmaz, T. (2014). Bankaların Sermaye Yeterliliği Oranı Açısından Riske Maruz Değer Hesaplama Yöntemlerinin Karşılaştırılması (Comparison of value at risk calculation models in terms of banks’ capital adequacy ratio). Business and Economics Research Journal, 5(3), 15–41.Google Scholar
  8. Bulut, E., & Gul, Z. B. (2004). Parametrik riske maruz deger yontemi ile doviz kuru riski yonetimi: Turkiye ornegi (Currency risk management with parametric value at risk method: Turkey example). Ekonomik Yaklasim, 13(45), 72–92.CrossRefGoogle Scholar
  9. Candelon, B., Colletaz, G., Hurlin, C., & Tokpavi, S. (2011). Backtesting value-at-risk: A GMM duration-based test. Journal of Financial Econometrics, 9, 314–343.CrossRefGoogle Scholar
  10. Catal, D., & Albayrak, R. S. (2013). Riske maruz deger hesabinda karisim kopula kullanimi: dolar-euro portfoyu (Use of mixture capula in value at risk: dollar-euro portfolio). Journal of Yasar University, 8(31), 5187–5202.Google Scholar
  11. Christoffersen, Peter F. (1998). Evaluating interval forecasts. International Economic Review, 39, 841–862.CrossRefGoogle Scholar
  12. Christoffersen, P., & Pelletier, D. (2004). Backtesting value-at-risk: A duration-based approach. Journal of Financial Econometrics, 2(1), 84–108.CrossRefGoogle Scholar
  13. Cifter, A., Ozun, A., & Yilmazer, S. (2007). Geriye donuk testlerin karsilastirmali analizi: doviz kuru uzerine bir uygulama (Comparative analysis of backtesting methods: an application on the currency rate). Bankacılar Dergisi, 62, 25–43.Google Scholar
  14. Cont, R. (2001). Empirical properties of asset returns: Stylized facts and statistical issues. Quantitative Finance, 1, 223–236.CrossRefGoogle Scholar
  15. Evci, S., & Kandir, S. Y. (2015). Altin piyasasinda piyasa riskinin olculmesi: riske maruz deger (VaR) yontemi ile bir uygulama (Market risk measure in gold market: an application with value at risk (VaR) Model). Nigde Universitesi İktisadi ve İdari Bilimler Fakultesi Dergisi, 26(92), 53–70.Google Scholar
  16. Fama, E. (1965). Random walks in stock market prices. Financial Analysts Journal, 21, 55–59.CrossRefGoogle Scholar
  17. Fama, E. (1970). Efficient capital markets: a review of theory and empirical work. Journal of Finance, 25(2), 383–417.CrossRefGoogle Scholar
  18. Gourieroux, C., Laurent, J. P., & Scaillet, O. (2000). Sensitivity analysis of values at risk. Journal of Empirical Finance, 7(3), 225–245.CrossRefGoogle Scholar
  19. Gunay, S. (2014). Are the scaling properties of bull and bear markets identical? evidence from oil and gold markets International Journal of Financial Studies, 2, 315–334.CrossRefGoogle Scholar
  20. Gursakal, S. (2007). Hisse senedi ve doviz piyasasi risklerinin riske maruz deger yontemi ile karsilastirilmasi (comparison of stock market and currency market risks through value at risk). Uludag Universitesi İktisadi ve İdari Bilimler Fakultesi Dergisi, 26(2), 61–76.Google Scholar
  21. Hillebrand, E. (2003). Mean reversion models of financial markets. Unpublished Doctoral Dissertation, Bremen University.Google Scholar
  22. Hurlin, C. (2013). Backtesting value-at-risk models, Séminaire validation des modèles financiers. Orleans: Orleans University.Google Scholar
  23. Kilic, R. (2004). On the long memory properties of emerging capital markets: evidence from Istanbul stock exchange. Applied Financial Economics, 14, 915–922.CrossRefGoogle Scholar
  24. Korkmaz, T., & Bostanci, A. (2011). Rmd hesaplamalarinda volatilite tahminleme modellerinin karsilastirilmasi ve Basel II yaklasimina gore geriye donuk test edilmesi: Imkb 100 endeksi uygulamasi (The comparison of volatility forecasting models in var calculations and backtesting according to Basel II: an application on Ise 100 index). Business and Economics Research Journal, 2(3), 1–17.Google Scholar
  25. Kupiec, P. (1995). Techniques for verifying the accuracy of risk management models. Journal of Derivatives, 3, 73–84.CrossRefGoogle Scholar
  26. Mandelbrot, B. B. (1963). The variation of certain speculative prices. Journal of Business, 36, 392–417.Google Scholar
  27. Mandelbrot, B. B. (1972). Statistical methodology for nonperiodic cycles from covariance to R/S analysis. Annals of Economic and Social Measurement, 1(3), 259–290.Google Scholar
  28. Mandelbrot, B. B., & Hudson, R. L. (2004). The misbehavior of markets: A fractal view of financial turbulence. New York: Basic Books.Google Scholar
  29. Moody, J., & Wu, L. (1996). Improved estimates for the rescaled range and Hurst exponents. In P. Refenes, Y. Abu-Mostafa, J. Moody, & A. Weigend (Eds.), Neural network in the capital markets. London: Word Scientific.Google Scholar
  30. Nolan, J. P. (2005). Modeling financial data with stable distributions. In S. T. Rachev (Ed.), Handbook of heavy tailed distributions in finance. Amsterdam: Elsevier-North Holland.Google Scholar
  31. Onalan, O. (2010). α - Kararli dagilimlarla finansal risk olcumu (Financial risk measure with α – stable distributions. Marmara Universitesi IIBF Dergisi, 28(1), 549–571.Google Scholar
  32. Ozturk, C., & Gurunlu, M. (2008). The effectiveness of the risk management, techniques in the Turkish banking system. Marmara Universitesi İİBF Dergisi, 14(1), 165–179.Google Scholar
  33. Ramasamy, R., & Helmi, M. H. M. (2011). Chaotic behavior of financial time series-an empirical assessment. International Journal of Business and Social Science, 2(3), 77–85.Google Scholar
  34. Rieger, J., Rüchardt, K., & Vogt, B. (2011). Comparing high frequency data of stocks that are traded simultaneously in the US and Germany: Simulated versus empirical data. Eurasian Economic Review, 1(2), 126–142.Google Scholar
  35. Soytas, U., & Unal, O. S. (2010). Turkiye doviz piyasalarinda oynakligin ongorulmesi ve risk yonetimi kapsaminda degerlendirilmesi (Forecasting the volatility in turkish exchange markets and an evaluation from a risk management perspective). Yönetim ve Ekonomi, 17(1), 121–146.Google Scholar
  36. Syriopoulos, T., & Tsatsaronis, M. (2012). Corporate governance mechanisms and financial performance: CEO duality in shipping firms. Eurasian Business Review, 2(1), 1–30.Google Scholar
  37. Taleb, T. T. (2007). The black swan: The impact of the highly improbable. New York: Random.Google Scholar
  38. Uckun, N., & Kandemir, S. (2008). Risk olcumunde riske maruz deger metodolojisi ve IMKB’de bir uygulama (Value at risk methodology in risk measurement and an implementation in Istanbul stock exchange). Muhasebe ve Finansman Ogretim Uyeleri Dernegi Dergisi, 38, 123–131.Google Scholar
  39. Ural, M. (2009). Riske maruz deger hesaplamasinda alternatif yaklasimlar (Alternative approaches for estimating value at risk). BDDK Bankacılık ve Finansal Piyasalar, 3(2), 63–86.Google Scholar
  40. Ural, M., & Adakale, T. (2009). Bireysel Emeklilik Fonlarinda Risk Yonetimi ve Riske Maruz Deger Analizi (risk management and value at risk analysis in the individual pension funds). Ege Akademik Bakıs, 9(4), 1463–1483.Google Scholar
  41. Yildirim, H., & Colakyan, A. (2014). Finansal yatirim araclarinda riske maruz deger uygulamasi (A study on value at risk methods in financial investment tools). Dokuz Eylul Universitesi, İktisadi ve İdari Bilimler Fakultesi Dergisi, 29(1), 1–24.Google Scholar
  42. Zhang, L. (2011). Multifractal properties of the industry indices for Chinese and Japanese stock markets. International Proceedings of Economics Development & Research, 12, 497–502.Google Scholar

Copyright information

© Eurasia Business and Economics Society 2017

Authors and Affiliations

  1. 1.Finance DepartmentAmerican University of the Middle EastEqailaKuwait

Personalised recommendations