Eurasian Business Review

, Volume 7, Issue 1, pp 93–120 | Cite as

Multilevel heterogeneity of R&D cooperation and innovation determinants

  • Sara Amoroso
Original Paper


Assessing the impact of public support to innovation on R&D collaboration may require a more complex multilevel design, that describes the likely correlation present among firms characteristics within a particular sector. Using data from the 2006 edition of the Community Innovation Survey (CIS) for the Netherlands, we propose a methodology to study the effect of firm-level characteristics on the propensity to undertake a research collaborative agreement. In particular, we show that controlling for a richer variance structure yields a different picture with respect to simpler regression frameworks adopted in the literature of R&D cooperation determinants. Moreover, such a hierarchical framework can be generalized allowing for clustering at higher levels, such as sectors or geographical areas. Besides the link between public funding and R&D collaboration, our results confirm the findings of the literature: technological spillovers, risk and cost sharing rationales, firm’s size, and type of innovative activity are related to the decision of engaging in different sorts of research alliances.


R&D collaboration Innovation R&D policy Bayesian analysis 

JEL Classification

O30 O32 C11 


  1. Almus, M., & Czarnitzki, D. (2003). The effects of public R&D subsidies on firms’ innovation activities: The case of Eastern Germany. Journal of Business & Economic Statistics, 21(2), 226–236.CrossRefGoogle Scholar
  2. Arora, A., & Cohen, W. M. (2015). Public support for technical advance: the role of firm size. Industrial and Corporate Change, 24(4), 791–802.CrossRefGoogle Scholar
  3. Belderbos, R., Carree, M., Diederen, B., Lokshin, B., & Veugelers, R. (2004a). Heterogeneity in R&D cooperation strategies. International Journal of Industrial Organization, 22(8–9), 1237–1263.CrossRefGoogle Scholar
  4. Belderbos, R., Carree, M., & Lokshin, B. (2004b). Cooperative R&D and firm performance. Research Policy, 33(10), 1477–1492.CrossRefGoogle Scholar
  5. Belderbos, R., Carree, M., & Lokshin, B. (2006). Complementarity in R&D cooperation strategies. Review of Industrial Organization, 28(4), 401–426.CrossRefGoogle Scholar
  6. Busom, I., & Fernández-Ribas, A. (2008). The impact of firm participation in R&D programmes on R&D partnerships. Research Policy, 37(2), 240–257.CrossRefGoogle Scholar
  7. Cassiman, B., & Veugelers, R. (2002). R&D cooperation and spillovers: Some empirical evidence from Belgium. Open access publications from katholieke universiteit leuven, Katholieke Universiteit Leuven.Google Scholar
  8. Cassiman, B., & Veugelers, R. (2006). In search of complementarity in innovation strategy: Internal R&D and external knowledge acquisition. Open access publications from katholieke universiteit leuven, Katholieke Universiteit Leuven: Open access publications from katholieke universiteit leuven.Google Scholar
  9. Catozzella, A., & Vivarelli, M. (2014). The possible adverse impact of innovation subsidies: some evidence from Italy. International Entrepreneurship and Management Journal, 1–18.Google Scholar
  10. Cohen, W. M., & Levinthal, D. A. (1990). Absorptive capacity: A new perspective on learning and innovation. Administrative Science Quarterly, 35(1), 128–152.CrossRefGoogle Scholar
  11. Coull, B., & Agresti, A. (2000). Random effects modeling of multiple binomial responses using the multivariate binomial logit-normal distribution. Biometrics, 56(1), 73–80.CrossRefGoogle Scholar
  12. Crespi, F., Ghisetti, C., & Quatraro, F. (2015). Environmental and innovation policies for the evolution of green technologies: A survey and a test. Eurasian Business Review, 5(2), 343–370.CrossRefGoogle Scholar
  13. d’Aspremont, C., & Jacquemin, A. (1988). Cooperative and Noncooperative R&D in Duopoly with Spillovers. American Economic Review, 78(5), 1133–1137.Google Scholar
  14. Dewar, R. D., & Dutton, J. E. (1986). The adoption of radical and incremental innovations: An empirical analysis. Management science, 32(11), 1422–1433.CrossRefGoogle Scholar
  15. Dosi, G. (1999). Some notes on national systems of innovation and production, and their implications for economic analysis. In D. Archibugi, J. Howells, & J. Michie (Eds.), Innovation policy in a global economy. Cambridge University Press.Google Scholar
  16. Gelman, A., Carlin, J., Stern, H., & Rubin, D. (2003). Bayesian data analysis (2nd ed.). UK: Chapman and Hall.Google Scholar
  17. Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In J. Berger, J. Bernardo, A. Dawid, & A. Smith (Eds.), Bayesian statistics (pp. 169–194). Oxford: Oxford University Press.Google Scholar
  18. Goldstein, H. (1995). Multilevel statistical models (2nd ed.). New York: Halstead Press.Google Scholar
  19. Hadfield, J., & Kruuk, L. (2010). MCMC methods for multi-response generalised linear mixed models: The MCMCglmm R package. Journal of Statistical Software, 33(2), 1–22.CrossRefGoogle Scholar
  20. Hanley, A., Liu, W.-H., & Vaona, A. (2015). Credit depth, government intervention and innovation in China: Evidence from the provincial data. Eurasian Business Review, 5(1), 73–98.CrossRefGoogle Scholar
  21. Heckman, J. J., Lochner, L., & Taber, C. (1998). General-equilibrium treatment effects: A study of tuition policy. American Economic Review, 88(2), 381–86.Google Scholar
  22. Hedeker, D., & Gibbons, R. D. (1996). MIXOR: A computer program for mixed-effects ordinal regression analysis. Computer Methods and Programs in Biomedicine, 49, 157–176.CrossRefGoogle Scholar
  23. Heidelberger, P., & Welch, P. D. (1983). Simulation run length control in the presence of an initial transient. Operations Research, 31(6), 1109–1144.CrossRefGoogle Scholar
  24. Henderson, R. (1993). Underinvestment and incompetence as responses to radical innovation: Evidence from the photolithographic alignment equipment industry. RAND Journal of Economics, 24(2), 248–270.CrossRefGoogle Scholar
  25. Hernán, R., Marín, P. L., & Siotis, G. (2003). An empirical evaluation of the determinants of Research Joint Venture Formation. Journal of Industrial Economics, 51(1), 75–89.CrossRefGoogle Scholar
  26. Kaiser, U. (2002). An empirical test of models explaining research expenditures and research cooperation: Evidence for the german service sector. International Journal of Industrial Organization, 20(6), 747–774.CrossRefGoogle Scholar
  27. Kamien, M. I., Muller, E., & Zang, I. (1992). Research joint ventures and R&D cartels. American Economic Review, 82(5), 1293–1306.Google Scholar
  28. Katz, M. L. (1986). An analysis of cooperative research and development. RAND Journal of Economics, 14(4), 527–543.Google Scholar
  29. Kim, J. (2014). Formal and informal governance in biotechnology alliances: Board oversight, contractual control, and repeated deals. Industrial and Corporate Change, 23(4), 903–929.CrossRefGoogle Scholar
  30. Kirat, T., & Lung, Y. (1999). Innovation and proximity. European Urban and Regional Studies, 6(1), 27–38.CrossRefGoogle Scholar
  31. Klette, T. J., Moen, J., & Griliches, Z. (2000). Do subsidies to commercial R&D reduce market failures? Microeconometric evaluation studies. Research Policy, 29(4–5), 471–495.CrossRefGoogle Scholar
  32. Korotayev, A. V., & Tsirel, S. V. (2010). A spectral analysis of world GDP dynamics: Kondratieff waves, Kuznets swings, Juglar and Kitchin cycles in global economic development, and the 2008–2009 economic crisis. Structure and Dynamics, 4(1), 3–57.Google Scholar
  33. Kultti, K., Takalo, T., & Tanayama, T. (2015). R&D spillovers and information exchange: a case study. Eurasian Economic Review, 5, 63–76.Google Scholar
  34. Leifer, R., Gina Colarelli, O., Rice, M., & Gina Colarelli, O. (2001). Implementing radical innovation in mature firms: The role of hubs. The Academy of Management Executive (1993–2005), 15(3):102–113.Google Scholar
  35. Lopez, A. (2008). Determinants of R&D cooperation: Evidence from Spanish manufacturing firms. International Journal of Industrial Organization, 26(1), 113–136.CrossRefGoogle Scholar
  36. Mohnen, P., & Röller, L.-H. (2005). Complementarities in innovation policy. European Economic Review, 49(6), 1431–1450.CrossRefGoogle Scholar
  37. OECD, E. (1997). Proposed guidelines for collecting and interpreting technological innovation data: Oslo manual.Google Scholar
  38. Piga, C. A., & Vivarelli, M. (2004). Internal and external R&D: A sample selection approach. Oxford Bulletin of Economics and Statistics, 66(4), 457–482.CrossRefGoogle Scholar
  39. Reinganum, J. (1983). Uncertain innovation and the persistence of monopoly. The American Economic Review, 73(4), 741–748.Google Scholar
  40. Rodríguez, G., & Goldman, N. (1995). An assessment of estimation procedures for multilevel models with binary responses. J. Royal Statistical Society, 158(1), 73–90.Google Scholar
  41. Schmitz, H. (1999). Collective efficiency and increasing returns. Cambridge Journal of Economics, 23(4), 465–483.CrossRefGoogle Scholar
  42. Tether, B. (2002). Who co-operates for innovation, and why: An empirical analysis. Research Policy, 31(6), 947–967.CrossRefGoogle Scholar
  43. Train, K. (2009). Discrete choice methods with simulation (2nd Edn.). Online economics textbooks: Cambridge University Press.Google Scholar
  44. Veugelers, R. (1997). Internal R&D expenditures and external technology sourcing. Research policy, 26(3), 303–315.CrossRefGoogle Scholar
  45. Wang, L., & Zajac, E. (2007). Alliance or acquisition? A dyadic perspective on interfirm resource combinations. Strategic Management Journal, 28(13), 1291–1317.CrossRefGoogle Scholar
  46. Zeger, S., & Karim, M. (1991). Generalized linear models with random effects; A Gibbs sampling approach. Journal of the American statistical association, 86(413), 79–86.CrossRefGoogle Scholar

Copyright information

© European Union 2016

Authors and Affiliations

  1. 1.Joint Research Centre, European CommissionSevilleSpain

Personalised recommendations