Exponentially Refined Mesh for Singularly Perturbed Interior Layer Problem


The main aim of this article is to demonstrate the efficiency of the exponentially refined a priori mesh \((H(\ell )\)) on capturing the interior layer. Upwind scheme on the proposed \(H(\ell )\) mesh is considered for a class of singularly perturbed differential equation with discontinuous convection coefficient. We have estimated that the algorithm is perturbation parameter (\(\epsilon \)) uniformly convergent with error asymptotic to \(O(N^{-1}(g^{\ell }(N))^2)\) where \(g^\ell \) is an arithmetic function and \(\ell \in {\mathbb {N}}\). The numerical estimates based on \(H(\ell )\) mesh and other layer adapted meshes like B-mesh, Shishkin mesh and \(S(\ell )\) mesh are compared demonstrating the efficiency of the \(H(\ell )\) mesh on capturing the interior layer.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Farrell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Singularly perturbed convection–diffusion problems with boundary and weak interior layers. J. Comput. Appl. Math. 166(1), 133–151 (2004)

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Farrell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Global maxi- mum norm parameter-uniform numerical method for a singularly perturbed convection- diffusion problem with discontinuous convection coefficient. Math. Comput. Model. 40(11), 1375–1392 (2004)

    MATH  Google Scholar 

  3. 3.

    Cen, Z.: A hybrid difference scheme for a singularly perturbed convection–diffusion problem with discontinuous convection coefficient. Appl. Math. Comput. 169(1), 689–699 (2005)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Mukherjee, K., Natesan, S.: \(\epsilon \)-uniform error estimate of hybrid numerical scheme for singularly perturbed parabolic problems with interior layers. Numer. Algorithms 58(1), 103–141 (2011)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Rai, P., Sharma, K.K.: Parameter uniform numerical method for singularly perturbed differential-difference equations with interior layers. Int. J. Comput. Math. 88(16), 3416–3435 (2011)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Sharma, K.K., Rai, P., Patidar, K.C.: A review on singularly perturbed differential equations with turning points and interior layers. Appl. Math. Comput. 219(22), 10575–10609 (2013)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Kumar, S.: A new efficient algorithm to solve non-linear fractional Ito coupled system and its approximate solution. Walailak J. Sci. Technol. 11(12), 1057–1067 (2014)

    Google Scholar 

  8. 8.

    Khader, M., Kumar, S., Abbasbandy, S.: Fractional homotopy analysis transforms method for solving a fractional heat-like physical model. Walailak J. Sci. Technol. 13(5), 337–353 (2015)

    Google Scholar 

  9. 9.

    Kumar, S.: A new mathematical model for nonlinear wave in a hyperelastic rod and its analytic approximate solution. Walailak J. Sci. Technol. 11, 965–973 (2014)

    Google Scholar 

  10. 10.

    Kumar, S.: A new fractional analytical approach for treatment of a system of physical models using Laplace transform. Scientia Iran. Trans. B Mech. Eng. 21(5), 1693 (2014)

    Google Scholar 

  11. 11.

    Shishkin, G.I.: A difference scheme for a singularly perturbed equation of parabolic type with discontinuous boundary conditions. U.S.S.R. Comput. Math. Phys. 28(6), 32–41 (1988)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Roos, H.G.: Layer-adapted grids for singular perturbation problems. Z. Angew. Math. Mech. 78, 291–309 (1998)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Vulanovic, R.: A priori meshes for singularly perturbed quasilinear two-point boundary value problems. IMA J. Numer. Anal. 21(1), 349–366 (2001)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Bakhvalov, N.S.: On the optimization of methods for solving boundary value problems with boundary layers. Zh. Vychisl. Mat. i Mat. Fiz. 9, 841–859 (1969)

    MathSciNet  Google Scholar 

  15. 15.

    Lin, T.: Layer-Adapted Meshes for Reaction–Convection–Diffusion Problems. Springer, New York (2009)

    Google Scholar 

  16. 16.

    Vulanovic, R.: On a numerical solution of a type of singularly perturbed boundary value problem by using a special discretization mesh. Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak., Ser. Mat 13, 187–201 (1983)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Ramesh, V.P., Kadalbajoo, M.K., Priyanga, B., Prithvi, M.: An a priori harmonic mesh for singularly perturbed boundary value problems. Int. J. Appl. Comput. Math. 4(6), 139 (2018)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Kadalbajoo, M.K., Ramesh, V.P.: Hybrid method for numerical solution of singularly perturbed delay differential equations. Appl. Math. Comput. 187(2), 797–814 (2007)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Kadalbajoo, M.K., Yadaw, A.S., Kumar, D.: Comparative study of singularly perturbed two-point bvps via: fitted-mesh finite difference method, b-spline collocation method and finite element method. Appl. Math. Comput. 204(2), 713–725 (2008)

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Farrell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Robust Computational Techniques for Boundary Layers. Chapman & Hall/CRC Press, London (2000)

    Google Scholar 

  21. 21.

    Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Fitted Numerical Methods for Singular Perturbation Problems. World Scientific, Singapore (1996)

    Google Scholar 

  22. 22.

    Kellogg, R.B., Tsan, A.: Analysis of some difference approximations for a singular perturbation problem without turning points. Math. Comput. 32(144), 1025–1039 (1978)

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Shishkin, G.I.: Grid Approximation of Singularly Perturbed Elliptic and Parabolic Equations, Second Doctoral Thesis. Keldysh Institute, Moscow [in Russian] (1990)

  24. 24.

    Doolan, E.P., Miller, J.J.H., Schilders, W.H.A.: Uniform Numerical Methods for Problems with Initial and Boundary Layers. Boole Press, Dublin (1980)

    Google Scholar 

  25. 25.

    Farrell, P.A., Hegarty, A.F.: On the determination of the order of uniform convergence. 13th IMACS World Congress on Procs. Comput. Appl. Math. 91, 501–502 (1991)

    Google Scholar 

Download references


We thank the referees and the editor for all their comments and suggestions to improve the presentation.

Author information



Corresponding author

Correspondence to V. P. Ramesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramesh, V.P., Kadalbajoo, M.K., Prithvi, M. et al. Exponentially Refined Mesh for Singularly Perturbed Interior Layer Problem. Int. J. Appl. Comput. Math 6, 82 (2020). https://doi.org/10.1007/s40819-020-00839-w

Download citation


  • Singular perturbation problem (SPP)
  • Interior layer
  • Generalized Shishkin
  • \(H(\ell )\) mesh
  • Finite difference scheme
  • B-type mesh

Mathematics Subject Classification

  • 34E15
  • 34K28