Skip to main content
Log in

Conservation Laws of Deformed N-Coupled Nonlinear Schrödinger Equations and Deformed N-Coupled Hirota Equations

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider two deformed equations namely, deformed N-coupled nonlinear Schrödinger (N-coupled NLS) equations and deformed N-coupled Hirota equations and show that both of them admit an infinitely many conservation laws, which ensures their complete integrability. The conservation laws of the above equations have been constructed by using their Lax representations through Ricatti equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abhinav, K., Guha, P.: Inhomogeneous Heisenberg spin chain and quantum vortex filament as non-holonomically deformed NLS systems. Eur. Phys. J. B 91(3), 52 (2018)

    Article  MathSciNet  Google Scholar 

  2. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  3. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249–315 (1974)

    Article  MathSciNet  Google Scholar 

  4. Anco, S.C.: Generalization of Noether’s theorem in modern form to non-variational partial differential equations. Recent progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science. Fields Institute Communications, vol 79 (2017)

    Chapter  Google Scholar 

  5. Anco, S.C., Bluman, G.: Direct construction of conservation laws from field equations. Phys. Rev. Lett. 78, 2869–2873 (1997)

    Article  MathSciNet  Google Scholar 

  6. Anco, S.C., Bluman, G.: Direct construction method for conservation laws of partial differential equations. Part I: examples of conservation law classifcations. Eur. J. Appl. Math. 13(5), 545–566 (2002)

    Article  Google Scholar 

  7. Anco, S.C., Bluman, G.: Direct construction method for conservation laws of partial differential equations. Part II: general treatment. Eur. J. Appl. Math. 13(5), 567–585 (2002)

    Article  Google Scholar 

  8. Bluman, G., Anco, S.C.: Symmetry and Integration Methods for Differential Equations. Springer Applied Mathematical Sciences, vol. 154. Springer, New York (2002)

    MATH  Google Scholar 

  9. Bluman, G., Kumei, S.: Symmetries and Differential Equations. Springer Applied Mathematical Sciences, vol. 81. Springer, New York (1989)

    Book  Google Scholar 

  10. Fokas, A.S.: Symmetries and Integrability. Stud. Appl. Math. 77(3), 253–299 (1987)

    Article  MathSciNet  Google Scholar 

  11. Götas, Ü., Hereman, W.: Symbolic computation of conserved densities forsystems of nonlinear evolution equations. J. Symb. Comput. 24(5), 591–622 (1997)

    Article  Google Scholar 

  12. Guha, P., Mukerjee, I.: Study of the family of nonlinear Schrödinger equations by using the Adler–Kostant–Symes framework and the Tu methodology and their nonholonomic deformation. arXiv:1311.4334v4 [nlin.SI] (2014)

  13. Ibragimov, N.H.: A new conservation theorem. J. Math. Anal. Appl. 333, 311–328 (2007)

    Article  MathSciNet  Google Scholar 

  14. Kara, A.H., Mahomed, F.M.: Relationship between symmetries and conservation laws. Int. J. Theor. Phys. 39(1), 23–40 (2000)

    Article  MathSciNet  Google Scholar 

  15. Kundu, A.: Nonlinearizing linear equations to integrable systems including new hierarchies with nonholonomic deformations. J. Math. Phys. 50, 102702 (2009)

    Article  MathSciNet  Google Scholar 

  16. Kundu, A., Sahadevan, R., Nalinidevi, L.: Nonholonomic deformation of KdV and mKdV equations and their symmetries, hierarchies and integrability. J. Phys. A Math. Theor. 42, 115213 (2009)

    Article  MathSciNet  Google Scholar 

  17. Lakshmanan, M., Rajasekar, S.: Nonlinear Dynamics: Integrability, Chaos and Patterns. Springer, Berlin (2003)

    Book  Google Scholar 

  18. Lax, P.D.: Integrals of nonlinear equations of evolution and solitary wave. Commun. Pure Appl. Math. 21, 467–490 (1968)

    Article  MathSciNet  Google Scholar 

  19. Liu, Y., Gao, Y.T., Xu, T., Lu, X., Sun, Z.Y., Meng, X.H., Yu, X., Gai, X.L.: Soliton solution, backlund transformation, and conservation laws for the Sasa–Satsuma equation in the optical fiber communications. Z. Naturforsch. 65, 291–300 (2010)

    Article  Google Scholar 

  20. Ma, W.X.: Conservation laws of discrete evolution equations by symmetries and adjoint symmetries. Symmetry 7(2), 714–725 (2015)

    Article  MathSciNet  Google Scholar 

  21. Ma, W.X.: Conservation laws by symmetries and adjoint symmetries. Discrete Contin. Dyn. Syst. Ser. S 11(4), 707–721 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Ma, W.X.: Long-time asymptotics of a three-component coupled mKdV system. Mathematics 7, 573 (2019)

    Article  Google Scholar 

  23. Ma, W.X.: A generating scheme for conservation laws of discrete zero curvature equations and its application. Comput. Math. Appl. 78(10), 3422–3428 (2019)

    Article  MathSciNet  Google Scholar 

  24. Miura, R.M., Gardner, C.S., Kruskal, M.D.: Korteweg–de Vries equation and generalizations. II. Existence of conservation laws and constants of motion. J. Math. Phys. 9, 1204–1209 (1968)

    Article  MathSciNet  Google Scholar 

  25. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1993)

    Book  Google Scholar 

  26. Sahadevan, R., Nalinidevi, L.: Similarity reduction, nonlocal and master symmetries of sixth order Korteweg–de Vries equation. J. Math. Phys. 50, 053505 (2009)

    Article  MathSciNet  Google Scholar 

  27. Sahadevan, R., Nalinidevi, L.: Integrability of certain deformed nonlinear partial differential equations. J. Nonlinear Math. Phys. 17(3), 379–396 (2010)

    Article  MathSciNet  Google Scholar 

  28. Suresh Kumar, S., Balakrishnan, S., Sahadevan, R.: Integrability and Lie symmetry analysis of deformed \(N-\)coupled nonlinear Schrödinger equations. Nonlinear Dyn. 90, 2783–2795 (2017)

    Article  Google Scholar 

  29. Suresh Kumar, S., Sahadevan, R.: Integrability and group theoretical aspects of deformed \(N-\)coupled Hirota equations. Int. J. Appl. Comput. Math. 5, 1–32 (2019)

    Article  MathSciNet  Google Scholar 

  30. Yang, J.Y., Ma, W.X.: Conservation laws of a perturbed Kaup–Newell equation. Mod. Phys. Lett. B 30, 1650381 (2016)

    Article  MathSciNet  Google Scholar 

  31. Zhang, H.Q., Chen, F.: Dark and antidark solitons for the defocusing coupled Sasa–Satsuma system by the Darboux transformation. Appl. Math. Lett. 88, 237–242 (2019)

    Article  MathSciNet  Google Scholar 

  32. Zhang, H.Q., Hu, R., Zhang, M.Y.: Darboux transformation and dark soliton solution for the defocusing Sasa–Satsuma equation. Appl. Math. Lett. 69, 101–105 (2017)

    Article  MathSciNet  Google Scholar 

  33. Zhang, H.Q., Yuan, S.S.: General \(N-\)dark vector soliton solution for multi-component defocusing Hirota system in optical fiber media. Commun. Nonlinear Sci. Numer. Simul. 51, 124–132 (2017)

    Article  MathSciNet  Google Scholar 

  34. Zhang, H.Q., Yuan, S.S.: Dark soliton solutions of the defocusing Hirota equation by the binary Darboux transformation. Nonlinear Dyn. 89(1), 531–538 (2017)

    Article  MathSciNet  Google Scholar 

  35. Zhang, H.Q., Zhang, M.Y., Hu, R.: Darboux transformation and soliton solutions in the parity-time-symmetric nonlocal vector nonlinear Schrödinger equation. Appl. Math. Lett. 76, 170–174 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the anonymous referees for their constructive suggestions. The first author (S.S) would like to thank the Management and Principal of C. Abdul Hakeem College (Autonomous), Melvisharam, for their support and encouragement. The second author (R.S) is supported by Council of Scientific industrial Research(CSIR), New Delhi under Emeritus Scientist Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Suresh Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

For the scalar deformed NLS equation (5), we have constructed another infinite sequence of conserved quantities \((\rho _j,F_j)\). For this purpose, we assume \(\varPhi _1(x,t) = T(x,t) \varPhi _2(x,t)\) and carry out similar analysis outlined in “Conserved quantities of scalar deformed NLS equation” subsection, the scalar deformed NLS equation (5) admits the following conserved quantities \((\rho _j,F_j)\). The conserved densities and associated fluxes are respectively given by,

$$\begin{aligned} \rho _1= & {} u_1= \dfrac{-iqq^*}{2},\\ \rho _2= & {} u_2=\dfrac{q^* q_x}{4},\\ \rho _3= & {} u_3=\dfrac{iq^*(q^*q^{2}+q_{xx})}{8}, \\ \rho _4= & {} u_4=-\dfrac{q q^*(q q^*_x+4q^*q_x)+q^* q_{xxx}}{16}, \\&\vdots \\ \rho _{j}= & {} u_j ,j\ge 1 \end{aligned}$$

and

$$\begin{aligned} F_1= & {} -2\ u_2+\dfrac{iu_1q^*_x}{q^*}+\dfrac{ih}{2},\\ F_2= & {} - 2\ u_3+\dfrac{iu_2q^*_x}{q^*}+\dfrac{u_1g^*}{2 q^*},\\ F_3= & {} -2\ u_4+\dfrac{iu_3q^*_x}{q^*}+\dfrac{u_2g^*}{2 q^*},\\ F_4= & {} -2\ u_5+\dfrac{iu_4q^*_x}{q^*}+\dfrac{u_3g^*}{2 q^*},\\&\vdots \\ F_j= & {} -2\ u_{j+1}+\dfrac{iu_jq^*_x}{q^*}+\dfrac{u_{j-1}g^*}{2 q^*},j=2,3,4,\ldots ,\qquad \end{aligned}$$

where

$$\begin{aligned} u_1= & {} \dfrac{-iqq^*}{2},\\ u_2= & {} \dfrac{iu_{1x}}{2}-\dfrac{iu_1q^*_{x}}{2q^*},\\ u_3= & {} \dfrac{iu_{2x}}{2}-\dfrac{iu_2q^*_{x}}{2q^*}-\dfrac{iu_1^2}{2}, \\ u_4= & {} \dfrac{iu_{3x}}{2}-\dfrac{iu_3q^*_{x}}{2q^*}-iu_1u_2, \\ u_5= & {} \dfrac{iu_{4x}}{2}-\dfrac{iu_4q^*_{x}}{2q^*}-\dfrac{iu_2^2}{2}-iu_1u_3, \\ u_6= & {} \dfrac{iu_{5x}}{2}-\dfrac{iu_5q^*_{x}}{2q^*}-iu_1u_4-iu_2u_3, \\&\vdots \\ u_j= & {} \dfrac{iu_{(j-1)x}}{2}-\dfrac{iu_{(j-1)}q^*_{x}}{2q^*}-\dfrac{i}{2}\sum \limits _{k=1}^{j-2}u_ku_{j-k-1},j\ge 3. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh Kumar, S., Sahadevan, R. Conservation Laws of Deformed N-Coupled Nonlinear Schrödinger Equations and Deformed N-Coupled Hirota Equations. Int. J. Appl. Comput. Math 6, 19 (2020). https://doi.org/10.1007/s40819-019-0766-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-019-0766-0

Keywords

Navigation