Skip to main content
Log in

Solution of the Blasius Equation by Using Adomian Kamal Transform

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this article, we present solution of Blasius differential equation with condition at infinity and convert the series solution into rational function by using Pad\( \breve{\hbox{e}} \)s approximation. A new method is introduced, called Adomian Kamal transform method, which is a combination of Adomian decomposition method and Kamal transform, for handling a differential equation of mixing layer that arises in viscous incompressible fluid. It offered not only the numerical values, but also the power series close-form solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baleanu, D., Inc, M.: Optimal system, nonlinear self-adjointness and conservation laws for generalized shallow water wave equation. De Gruyter 16, 364–370 (2018)

    Google Scholar 

  2. Baleanu, D., Inc, M.: Space-time fractional Rosenou–Haynam equation: Lie symmetry analysis, explicit solutions and conservation laws. Adv. Differ. Equ. 46, 1–14 (2018). https://doi.org/10.1186/s13662-018-1468-3

    Article  MathSciNet  MATH  Google Scholar 

  3. Baleanu, D., Inc, M.: Lie symmetry analysis and conservation laws for the time fractional simplified modified Kawahara equation. De Gruyter 16, 302–310 (2018)

    Google Scholar 

  4. Tchier, F., Inc, M.: Time fractional third-order variant Boussinesq system: symmetry analysis, explicit solutions, conservation laws and numerical approximations. Eur. Phys. J. Plus. 133, 1–15 (2018)

    Article  Google Scholar 

  5. Inc, M., Yusuf, A.: Investigation of the logarithmic-KdV equation involving Mittag-Leffler type kernel with Atangana-Baleanu derivative. J. Phys. A (2018). https://doi.org/10.1016/j.physa.2018.04.092

    Article  MathSciNet  Google Scholar 

  6. Inc, M., Yusuf, A.: Fractional optical solitons for the conformable space–time nonlinear Schrodinger equation with Kerr law nonlinearity. Opt. Quant. Electron. 50(3), 139 (2018)

    Article  Google Scholar 

  7. Yusuf, A., Inc, M., Aliyu, A.I., Baleanu D.: Conservation laws, soliton-like and stability analysis for the time fractional dispersive long-wave equation. Adv. Differ. Equ. 2018, 319 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Aliyu, I.A., Inc, M.: A fractional model of vertical transmission and cure of vector-borne diseases pertaining to the Atangana-Baleanu fractional derivatives. Chaos Solitons Fractals 116, 268–277 (2018)

    Article  MathSciNet  Google Scholar 

  9. Inc, M., Aliyu, I.A.: Gray optical soliton, linear stability analysis and conservation laws via multipliers to the cubic nonlinear Schrödinger equation. Optik 164, 472–478 (2018)

    Article  Google Scholar 

  10. Inc, M., Aliyu, I.A.: Optical solitons, explicit solutions and modulation instability analysis with second-order spatio-temporal dispersion. Eur. Phys. J. Plus. 132, 528 (2017)

    Article  Google Scholar 

  11. Inc, M., Aliyu, I.A.: Optical and singular solitary waves to the PNLSE with third order dispersion in Kerr media via two integration approaches. Optik 163, 142–151 (2018)

    Article  Google Scholar 

  12. Inc, M., Hashemi, S.M.: Exact solutions and conservation laws of the Bogoyavlenskii equation. Acta Phys. Pol. A 133, 1133–1137 (2018)

    Article  Google Scholar 

  13. Wazwaz, A.M.: The variation iteration method for solving two forms of Blasius equation on a Half-infinite domain. Appl. Math. Comput. 188, 485–491 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Ebaid, A., Al-Armani, N.: A new approach for a class of the Blasius problem via a transformation and Adomians method. Abst. Appl. Anal. (2013). https://doi.org/10.1155/2013/753049

    Article  MathSciNet  Google Scholar 

  15. Ogunlaran, M., Sagay-Yusuf, H.: Adomain Sumudu transform method for the Blasius equation. Br. J. Math. Comput. Sci. 14(3), 1–8 (2016)

    Article  Google Scholar 

  16. Abdelilah, K., Hassan, S.: The new integral Kamal transform. Adv. Theor. Appl. Math. 11(4), 451–458 (2016)

    Google Scholar 

  17. Khandelwal, R., Kumawat, P.: Kamal decomposition method and its application in solving coupled system of nonlinear PDE’s. Malaya J. Mat. 6(3), 619–625 (2018). https://doi.org/10.26637/MJM0603/0024

    Article  Google Scholar 

  18. Khandelwal, R., Choudhary, P.: Solution of fractional ordinary differential equation by Kamal transform. Int. J. Stat. Appl. Math. 3(2), 279–284 (2018)

    Google Scholar 

  19. Hassan, Y.Q., Zhu, L.M.: A note on the use of modified Adomian decomposition method for solving singular boundary value problems of higher-order ordinary deferential equations. Commun. Nonlinear Sci. Numer. Simul. 14, 3261–3265 (2009)

    Article  Google Scholar 

  20. Wazwaz, A.M.: The modified decomposition method and Padĕ approximants for solving the Thomas-Fermi equation. Appl. Math. Comput. 105(1), 11–19 (1999)

    MathSciNet  MATH  Google Scholar 

  21. Baker, G.A.: Essentials of Padĕ Approximants. Academic Press, London (1975)

    MATH  Google Scholar 

  22. Khandelwal, Y., Umar, A.B.: Solution of the Blasius Equation by using Adomain Mahgoub transform. Int. J. Math. Trends Technol. 56(5), 303–306 (2018)

    Article  Google Scholar 

  23. Motsa, S., Marewo, G.T.: An improved spectral homotopy analysis method for solving boundary layer problems. Bound. Value Probl. (2011)

  24. Belgacem, F.B.M., Karaballi, A.A.: Sumudu transform fundamental properties investigations and applications. J. Appl. Math. Stoch. Anal. 1–23 (2006). https://doi.org/10.1155/JAMSA/2006/91083

  25. Belgacem, F.B.M., Karaballi, A.A., Kalla S.L.: Analytical investigations of the Sumudu transform and applications to integral production equations. Math. Probl. Eng. 2003(3), 103–118 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method, p. 60. Springer, Berlin (2013)

    Google Scholar 

Download references

Acknowledgements

I thank the reviewers for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachana Khandelwal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khandelwal, R., Kumawat, P. & Khandelwal, Y. Solution of the Blasius Equation by Using Adomian Kamal Transform. Int. J. Appl. Comput. Math 5, 20 (2019). https://doi.org/10.1007/s40819-019-0601-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-019-0601-7

Keywords

Navigation