Skip to main content
Log in

Traveling and Shock Wave Simulations in A Viscous Burgers’ Equation with Periodic Boundary Conditions

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

A fourth order numerical method based on cubic B-spline functions has been proposed to solve the periodic Burgers’ equation. The method is capable of capturing the physical behavior of the Burgers’ equation very efficiently. Obtained solutions confirm that the Burgers’ equation sets a balance between nonlinearity and diffusion. The term \(u u_{x}\) produces a shocking up effect that causes waves to break while the diffusion term \(u_{xx}\) helps to smooth out shocks. As the diffusion term decreases, the smooth viscous solutions tend to become discontinuous shock waves. Approximate solutions are in good agreement with the earlier studies. Four well known problems of the periodic Burgers’ equation have been considered to test the efficiency of the method. With small modifications, method can be employed to solve different kind of partial differential equations arising in various areas of science and engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bateman, H.: Some recent researches on the motion of fluids. Mon. Weather Rev. 43, 163–170 (1915)

    Article  Google Scholar 

  2. Burgers, J.M.: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171–199 (1948)

    Article  MathSciNet  Google Scholar 

  3. Cole, J.D.: On a quasi-linear parabolic equation in aerodynamics. Q. Appl. Math. 9, 225236 (1951)

    Article  MathSciNet  Google Scholar 

  4. Hopf, E.: The partial differential equation \(u_{t} + uu_{x}=\mu u_{xx}\). Commun. Pure Appl. Math. 3, 201–230 (1950)

    Article  Google Scholar 

  5. Ganji, D.D., Tari, H., Babazadeh, H.: The application of Hes variational iteration method to nonlinear equations arising in heat transfer. Phys. Lett. A 363, 213–217 (2007)

    Article  Google Scholar 

  6. Brezis, H., Browder, F.: Partial differential equations in the 20th century. Adv. Math. 135, 76–144 (1998)

    Article  MathSciNet  Google Scholar 

  7. Doelman, A., Sandstede, B., Scheel, A., Schneider, G.: The dynamics of modulated wave trains. Mem. Amer. Math. Soc. 199 (2009)

    Article  MathSciNet  Google Scholar 

  8. Caldwell, J., Smith, P.: Solution of Burgers equation with a large Reynolds number. Appl. Math. Model. 6, 381385 (1982)

    MathSciNet  MATH  Google Scholar 

  9. Aksan, E.N.: Quadratic B-spline finite element method for numerical solution of the Burgers equation. Appl. Math. Comput. 174, 884896 (2006)

    MathSciNet  Google Scholar 

  10. Ozis, T., Aksan, E.N., Ozdes, A.: A finite element approach for solution of Burgers equation. Appl. Math. Comput. 139, 417428 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Ali, A.H.A., Gardner, G.A., Gardner, L.R.T.: A collocation solution for Burgers equation using cubic B-spline finite elements. Comput. Methods Appl. Mech. Eng. 100, 325337 (1992)

    Article  MathSciNet  Google Scholar 

  12. Saka, B., Dag, I.: Quartic B-spline collocation method to the numerical solutions of the Burgers equation. Chaos Solitons Fractals 32, 11251137 (2007)

    Article  MathSciNet  Google Scholar 

  13. Khater, A.H., Temsah, R.S., Hassan, M.M.: A Chebyshev spectral collocation method for solving Burgers type equations. J. Comput. Appl. Math. 222, 333350 (2008)

    Article  MathSciNet  Google Scholar 

  14. Korkmaz, A., Aksoy, A.M., Dag, I.: Quartic B-spline differential quadrature method. Int. J. Nonlinear Sci. 11(4), 403411 (2011)

    Google Scholar 

  15. Korkmaz, A., Dag, I.: Polynomial based differential quadrature method for numerical solution of nonlinear Burgers equation. J. Frankl. Inst. 348(10), 28632875 (2011)

    Article  MathSciNet  Google Scholar 

  16. Liao, W.: An implicit fourth-order compact finite difference scheme for onedimensional Burgers equation. Appl. Math. Comput. 206, 755764 (2008)

    Google Scholar 

  17. Kutulay, S., Esen, A., Dag, I.: Numerical solutions of the Burgers equation by the least-squares quadratic B-spline finite element method. J. Comput. Appl. Math. 167, 2133 (2004)

    MathSciNet  Google Scholar 

  18. Tabatabaei, A.H.A.E., Shakour, E., Dehghan, M.: Some implicit methods for the numerical solution of Burgers equation. Appl. Math. Comput. 191, 560570 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Abdou, M.A., Soliman, A.A.: Variational iteration method for solving Burgers and coupled Burgers equations. J. Comput. Appl. Math. 181(2), 245251 (2005)

    Article  MathSciNet  Google Scholar 

  20. Rashidi, M.M., Domairry, G., Dinarvand, S.: Approximate solutions for the Burgers and regularized long wave equations by means of the homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 14, 708717 (2009)

    Google Scholar 

  21. Kadalbajoo, M.K., Awasthi, A.: A numerical method based on Crank–Nicolson scheme for Burgers equation. Appl. Math. Comput. 182, 14301442 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Mittal, R.C., Jain, R.K.: Numerical solutions of nonlinear Burgers equation with modified cubic B-splines collocation method. Appl. Math. Comput. 218, 78397855 (2012)

    MathSciNet  Google Scholar 

  23. Mittal, R.C., Jiwari, R., Sharma, K.K.: A numerical scheme based on differential quadrature method to solve time dependent Burgers equation. Eng. Comput. 30(1), 117131 (2013)

    Google Scholar 

  24. Rahman, K., Helil, N., Yimin, R.: Some new semiimplicit finite difference schemes for numerical solution of Burgers equation. In: International Conference on Computer Application and System Modeling, (ICCASM 2010). IEEE (2010). ISBN: 978-1-4244-7237, V14-451V14-455

  25. Jiwari, R., Mittal, R.C., Sharma, K.K.: A numerical scheme based on weighted average differential quadrature method for the numerical solution of Burgers equation. Appl. Math. Comput. 219, 66806691 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Jiwari, R.: A Haar wavelet quasilinearization approach for numerical simulation of Burgers equation. Comput. Phys. Commun. 183, 24132423 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Mittal, R.C., Rohila, R.: A study of one dimensional non linear diffusion equations by Bernstein polynomial based differential quadrature method. J. Math. Chem. 55, 673–695 (2016)

    Article  Google Scholar 

  28. Mittal, R.C., Singhal, P.: Numerical solution of periodic Burgers’ equation. Indian J. Pure Appl. Math. 27, 689–700 (1996)

    MathSciNet  MATH  Google Scholar 

  29. Prenter, P.M.: Splines and Variational Methods. Wiley, Hoboken (1989)

    MATH  Google Scholar 

  30. Lucas, T.R.: Error bounds for interpolating cubic splines under various end conditions. SIAM J. Numer. Anal. 11, 569–584 (1975)

    Article  MathSciNet  Google Scholar 

  31. Stipcich, G.: High order methods for computational fluid dynamics. PhD Dissertation (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajni Rohila.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittal, R.C., Rohila, R. Traveling and Shock Wave Simulations in A Viscous Burgers’ Equation with Periodic Boundary Conditions. Int. J. Appl. Comput. Math 4, 150 (2018). https://doi.org/10.1007/s40819-018-0582-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-018-0582-y

Keywords

Navigation