Skip to main content
Log in

Two Dimensional Wavelets Collocation Scheme for Linear and Nonlinear Volterra Weakly Singular Partial Integro-Differential Equations

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this article, we have study a 2D Legendre and Chebyshev wavelets collocation scheme for solving a class of linear and nonlinear weakly singular Volterra partial integro-differential equations (PIDEs). The scheme is based on wavelets collocation for PIDEs with uniquely designed matrices over the Hilbert space defined on the domain \(\left( [0, 1]\times [0, 1]\right) \). Using piecewise approximation associated with 2D Legendre wavelet, 2D Chebyshev wavelet and its operational matrices, the considered PIDEs will be reduced into the corresponding system of linear and nonlinear algebraic equations. The corresponding linear and nonlinear system of equations solved by collocation scheme and well-known Newton–Raphson scheme at collocation points respectively. In addition, the convergence and error analysis of the numerical scheme is provided under several mild conditions. The numerical results are correlated with the exact solutions and the execution of the proposed scheme is determined by estimating the maximum absolute errors, \(l_{2}\hbox {-}norm\) errors and \(l_{\infty }\hbox {-}norm\) errors. The numerical result shows that the scheme is simply applicable, efficient, powerful and very precisely at small number of basis function. The main important applications of the proposed wavelets collocation scheme is that it can be applied on linear as well as nonlinear problems and can be applied on higher order partial differential equations too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Singh, S., Patel, V.K., Singh, V.K.: Operational matrix approach for the solving of partial integro-differential equation. Appl. Math. Comput. 283, 195–207 (2016)

    MathSciNet  Google Scholar 

  2. Allegretto, W., Cannon, J.R., Lin, Y.: A parabolic integro-differential equation arising from thermoelastic contact. Discrete Contin. Dyn. Syst. 3, 217–234 (1997)

    Article  MathSciNet  Google Scholar 

  3. Gurtin, M., Pipkin, A.: A general theory of heat conduction with finite wave speeds. Arch. Ration. Mech. Anal. 31, 113–126 (1968)

    Article  MathSciNet  Google Scholar 

  4. Londen, S.O., Nohel, J.A.: A non linear Volterra integro-differential equation accruing in heat flow. J. Integral Equ. 6, 11–50 (1984)

    MATH  Google Scholar 

  5. Dafermas, C.M.: An abstract Volterra equation with application to linear viscoelasticity. J. Differ. Equ. 7, 554–569 (1970)

    Article  MathSciNet  Google Scholar 

  6. Lodge, A.S., Renardy, M., Nohel, J.A.: Viscoelasticity and Rhealogy. Academic Press, New York (1985)

    Google Scholar 

  7. Wang, X.T., Lin, Y.M.: Numerical solution of optimal control for linear Volterra integro-differential systems via hybrid function. J. Frankl. Inst. 348, 2322–2331 (2011)

    Article  Google Scholar 

  8. Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of semi linear system with state delay using sequence scheme. J. Frankl. Inst. 352, 5380–5392 (2015)

    Article  Google Scholar 

  9. Bhattacharya, S., Mandal, B.N.: Numerical solution of a singular integro-differential equation. Appl. Math. Comput. 195, 346–350 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Chakrabarti, A.: Hamsapriye: numerical solution of a singular integro-differential equation. Zamm Z. Angew Math. Mech. 79, 233–241 (1999)

    Article  MathSciNet  Google Scholar 

  11. Mandal, B.N., Chakrabarti, A.: A generalisation to the hybrid Fourier transform and its application. Appl. Math. Lett. 16, 703–708 (2003)

    Article  MathSciNet  Google Scholar 

  12. Nemati, S., Lima, P.M., Ordokhani, Y.: Numerical solution of a class of two-dimensional nonlinear Volterra integral equation using Legendre polynomials. J. Comput. Appl. Math. 242, 53–69 (2013)

    Article  MathSciNet  Google Scholar 

  13. Yousefi, S.A., Behroozifar, M., Dehghan, M.: The operational matrices of Bernstein polynomials for solving the parabolic equation subject to specification of the mass. J. Comput. Appl. Math. 235, 5272–5283 (2011)

    Article  MathSciNet  Google Scholar 

  14. Chen, Y., Tong, T.: Spectral schemes for weakly singular Volterra integral equations with smooth solutions. J. Comput. Appl. Math. 233, 938–950 (2009)

    Article  MathSciNet  Google Scholar 

  15. Chen, Y.: A note on Jacobi spectral collocation schemes for weakly singular Volterra integral equations with smooth solutions. J. Comput. Math. 31, 47–56 (2013)

    Article  MathSciNet  Google Scholar 

  16. Chen, Y., Tong, T.: Convergence analysis of the Jacobi spectral collocation schemes for Volterra integral equations with weakly singular kernel. Math. Comput. 79, 147–167 (2010)

    Article  Google Scholar 

  17. Wei, Y., Chen, Y.: Legendre spectral collocation schemes for pantograph Volterra delay-integro-differential equations. J. Sci. Comput. 53, 672–688 (2012)

    Article  MathSciNet  Google Scholar 

  18. Izadi, F.F., Dehghan, M.: Space-time spectral scheme for a weakly singular parabolic partial integro-differential equation on irregular domains. Comput. Math. Appl. 67, 1884–1904 (2014)

    Article  MathSciNet  Google Scholar 

  19. Galli, A.W., Heydt, G.T., Ribeiro, P.F.: Exploring the power of wavelet analysis. IEEE Comput. Appl. Power 9, 37–41 (1996)

    Article  Google Scholar 

  20. Lee, D.T.L., Yamamoto, A.: Wavelet analysis: theory and applications. Hewlett-Packard J. 45, 44–54 (1994)

    Google Scholar 

  21. Mallat, S.G.: A theory for multiresolation signal decomposition the wavelet presentation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989)

    Article  Google Scholar 

  22. Postnikov, E.B., Singh, V.K.: Local spectral analysis of images via the wavelet transform based on partial differential equations. Multidimens. Syst. Signal Process. 25, 145–155 (2014)

    Article  MathSciNet  Google Scholar 

  23. Rioul, O., Vetterli, M.: Wavelets and signal processing. IEEE SP Magazine, pp. 14–38 (1991)

  24. Alpert, B., Beylkin, G., Gines, D., Vozovoi, L.: Adaptive solution of partial differential equations in multiwavelet bases. J. Comput. Phys. 182, 149–190 (2002)

    Article  MathSciNet  Google Scholar 

  25. Kumar, B.V.R., Mehra, M.: A three-step wavelet Galerkin scheme for parabolic and hyperbolic poles. Int. J. Comput. Math. 83, 143–157 (2006)

    Article  MathSciNet  Google Scholar 

  26. Lepik, Ü.: Solving PDEs with the aid of two-dimensional Haar wavelets. Comput. Math. Appl. 61, 1873–1879 (2011)

    Article  MathSciNet  Google Scholar 

  27. Li, H., Di, L., Ware, A., Yuan, G.: The applications of partial integro-differential equations related to adaptive wavelet collocation schemes for viscosity solutions to jump-diffusion models. Appl. Math. Comput. 246, 316–335 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Matache, A.M., Schwab, C., Wihler, T.P.: Fast numerical solution of parabolic integro-differential equations with application in finance. SIAM J. Sci. Comput. 27, 369–393 (2005)

    Article  MathSciNet  Google Scholar 

  29. Mehra, M., Kevlahan, N.K.R.: An adaptive wavelet colloctation scheme for the solution of partial differential equations on the sphere. J. Comput. Phys. 227, 5610–5632 (2008)

    Article  MathSciNet  Google Scholar 

  30. Petersdorff, T.V., Schwab, C.: Wavelets discretizations of parabolic integro-differential equations. SIAM J. Numer. Anal. 41, 159–180 (2003)

    Article  MathSciNet  Google Scholar 

  31. Singh, V.K., Postnikov, E.B.: Operational matrix approach for solution of integro-differential equation arising in theory of anomalous relaxation processes in vicinity of singular point. Appl. Math. Model. 37, 6609–6616 (2013)

    Article  MathSciNet  Google Scholar 

  32. Yin, F., Tian, T., Song, J., Zhu, M.: Spectral schemes using Legendre wavelets for non liner Klein Sine-Gordon equations. J. Comput. Appl. Math. 275, 321–334 (2015)

    Article  MathSciNet  Google Scholar 

  33. Hariharan, G., Kannan, K.: Review of wavelet schemes for the solution of reaction-diffusion problems in science and engineering. Appl. Math. Model. 38, 799–813 (2014)

    Article  MathSciNet  Google Scholar 

  34. Mehra, M.: Wavelets and differential equations: a short review. In. Proc. AIP Conf. 1146, 241–252 (2009)

    Article  Google Scholar 

  35. Venkatesh, S.G., Ayyaswamy, S.K., Balachandar, S.R.: The Legendre wavelet scheme for solving initial value problems of Bratu-type. Comput. Math. Appl. 63, 1287–1295 (2012)

    Article  MathSciNet  Google Scholar 

  36. Venkatesh, S.G., Ayyaswamy, S.K., Balachandar, S.R.: Legendre wavelets based approximation scheme for solving advection problems. Ain Shams Eng. J. 4, 925–932 (2013)

    Article  Google Scholar 

  37. Jafari, H., Yousefi, S.A., Firoozjaee, Momani S., Khalique, C.M.: Application of Legendre wavelets for solving fractional differential equations. Comput. Math. Appl. 62, 1038–1045 (2011)

    Article  MathSciNet  Google Scholar 

  38. Babolian, E., Fattahzadeh, F.: Numerical computation scheme in solving integral equations by using Chebyshev wavelet operational matrix of integration. Appl. Math. Comput. 188, 1016–1022 (2007)

    MathSciNet  MATH  Google Scholar 

  39. Toutounian, F., Tohidi, E.: A new Bernoulli matrix scheme for solving second order linear partial differential equations with convergence analysis. J. Appl. Math. Comput. 223, 298–310 (2013)

    Article  Google Scholar 

  40. Sahu, P.K., Ray, S.S.: Legendre wavelets operational scheme for the numerical solutions of non linear Volterra integro-differential equations system. Appl. Math. Comp. 256, 715–723 (2015)

    Article  Google Scholar 

  41. Heydari, M.H., Hooshmandasi, M.R., Ghaini, F.M.M.: A new approach of the Chebyshev wavelets schemes for partial differential equations with boundary conditions of the telegraph type. Appl. Math. Model. 38, 1597–1606 (2014)

    Article  MathSciNet  Google Scholar 

  42. Hosseini, S.G., Mohammadi, F.: A new operational matrix of derivative for Chebyshev wavelets and its applications in solving ordinary differential equations with non analytic solution. Appl. Math. Sci. 5, 2537–2548 (2011)

    MathSciNet  MATH  Google Scholar 

  43. Patel, V.K., Singh, S., Singh, V.K.: Two-dimensional wavelets collocation scheme for electromagnetic waves in dielectric media. J. Comput. Appl. Math. 317, 307–330 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The corresponding author acknowledge the financial support from Science and Engineering Research Board (SERB) with sanction order No. YSS/2015/001017. The authors are very grateful to the editor and referees for their valuable comments and suggestion for the improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vineet Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, V.K., Singh, S., Singh, V.K. et al. Two Dimensional Wavelets Collocation Scheme for Linear and Nonlinear Volterra Weakly Singular Partial Integro-Differential Equations. Int. J. Appl. Comput. Math 4, 132 (2018). https://doi.org/10.1007/s40819-018-0560-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-018-0560-4

Keywords

Mathematics Subject Classification

Navigation