Advertisement

Insight into the Natural Convection Flow Through a Vertical Cylinder Using Caputo Time-Fractional Derivatives

  • Nehad Ali Shah
  • Thanaa Elnaqeeb
  • I. L. Animasaun
  • Yasir Mahsud
Original Paper

Abstract

The variation in temperature distribution with time for the case of the fractional model which models the flow of fluid through a vertical cylinder is considered. This article provides an insight into the natural convective flow of a viscous fluid through a vertical heated cylinder using the fractional differential equation with Caputo derivatives. Analytical solutions for temperature and velocity functions were obtained using Laplace transform and finite Hankel integral transform methods. Stehfest’s algorithm was used to obtain the inverse Laplace transforms. Numerical simulations and graphical illustrations were carried out in order to analyze the influence of the time-fractional derivative on the transport phenomenon. The significant difference between the fractional fluid flow and ordinary fluid at various time (\( t \)) is unraveled. At the initial time, the flow of fractional fluid is faster than the ordinary fluid.

Keywords

Natural convection flow Vertical cylinder Laplace and finite Hankel transforms Caputo time-fractional derivative 

References

  1. 1.
    Zhao, J.Q., Abrahamson, J.: The flow in cylindrical cyclones. Asia Pac. J. Chem. Eng. 11(3–4), 201–222 (2003).  https://doi.org/10.1002/apj.5500110403 Google Scholar
  2. 2.
    Sharma, A.K., Velusamy, K., Balaji, C.: Conjugate transient natural convection in a cylindrical enclosure with internal volumetric heat generation. Ann. Nucl. Energy 35(8), 1502–1514 (2008).  https://doi.org/10.1016/j.anucene.2008.01.008 CrossRefGoogle Scholar
  3. 3.
    Franke, M.E., Hutson, K.E.: Effects of corona discharge on free-convection heat transfer inside a vertical hollow cylinder. J. Heat Transf. 106(2), 346–351 (1984).  https://doi.org/10.1115/1.3246679 CrossRefGoogle Scholar
  4. 4.
    Roschina, N.A., Uvarov, A.V., Osipov, A.I.: Natural convection in an annulus between coaxial horizontal cylinders with internal heat generation. Int. J. Heat Mass Transf. 48(21–22), 4518–4525 (2005).  https://doi.org/10.1016/j.ijheatmasstransfer.2005.05.035 CrossRefzbMATHGoogle Scholar
  5. 5.
    Bairi, A.: Transient natural 2D convection in a cylindrical cavity with the upper face cooled by thermoelectric peltier effect following an exponential law. Appl. Therm. Eng. 23(4), 431–447 (2003).  https://doi.org/10.1016/s1359-4311(02)00207-7 CrossRefGoogle Scholar
  6. 6.
    Morgan, V.: The overall convective heat transfer from smooth circular cylinders. Adv. Heat Transf. 11, 199–264 (1975).  https://doi.org/10.1016/s0065-2717(08)70075-3 CrossRefGoogle Scholar
  7. 7.
    Lemembre, A., Petit, J.P.: Laminar natural convection in a laterally heated and upper cooled vertical cylindrical enclosure. Int. J. Heat Mass Transf. 41(16), 2437–2454 (1998)CrossRefzbMATHGoogle Scholar
  8. 8.
    Chen, S.A.H., Humphrey, J.A.C.: Steady, two-dimensional, natural convection in rectangular enclosures with differently heated walls. J. Heat Transf. 109, 400–406 (1987)CrossRefGoogle Scholar
  9. 9.
    Kim, D.M., Viskanta, R.: Effect of wall heat conduction on natural convection heat transfer in a square enclosure. J. Heat Transf. 107, 139–146 (1985)CrossRefGoogle Scholar
  10. 10.
    Vargas, M., Sierra, F.Z., Ramos, E., Avramenko, A.A.: Steady natural convection in a cylindrical cavity. Int. Commun. Heat Mass Transf. 29(2), 213–221 (2002)CrossRefGoogle Scholar
  11. 11.
    Makinde, O.D., Animasaun, I.L.: Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution. Int. J. Therm. Sci. 109, 159–171 (2016)CrossRefGoogle Scholar
  12. 12.
    Makinde, O.D., Animasaun, I.L.: Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution. J. Mol. Liq. 221, 733–743 (2016)CrossRefGoogle Scholar
  13. 13.
    Animasaun, I.L.: 47 nm alumina–water nanofluid flow within boundary layer formed on upper horizontal surface of paraboloid of revolution in the presence of quartic autocatalysis chemical reaction. Alex. Eng. J. 55(3), 2375–2389 (2016)CrossRefGoogle Scholar
  14. 14.
    Koriko, O.K., Omowaye, A.J., Sandeep, N., Animasaun, I.L.: Analysis of boundary layer formed on an upper horizontal surface of a paraboloid of revolution within nanofluid flow in the presence of thermophoresis and Brownian motion of 29 nm CuO. Int. J. Mech. Sci. 124, 22–36 (2017)CrossRefGoogle Scholar
  15. 15.
    Kee, R.J., Landram, C.S., Miles, J.C.: Natural convection of a heat generating fluid within closed vertical cylinders and sphere. J. Heat Transf. Trans. ASME 98(1), 55–61 (1976)CrossRefGoogle Scholar
  16. 16.
    Babu, M.J., Sandeep, N., Saleem, S.: Free convective MHD Cattaneo–Christov flow over three different geometries with thermophoresis and Brownian motion. Alex. Eng. J. 56(4), 659–669 (2017)CrossRefGoogle Scholar
  17. 17.
    Hayat, T., Makhdoom, S., Awais, M., Saleem, S., Rashidi, M.M.: Axisymmetric Powell–Eyring fluid flow with convective boundary condition: optimal analysis. Appl. Math. Mech. 37(7), 919–928 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Nadeem, S., Saleem, S.: An optimized study of mixed convection flow of a rotating Jeffrey nanofluid on a rotating vertical cone. J. Comput. Theor. Nanosci. 12(10), 3028–3035 (2015)CrossRefGoogle Scholar
  19. 19.
    Nadeem, S., Saleem, S.: Mixed convection flow of Eyring-Powell fluid along a rotating cone. Res. Phys. 4, 54–62 (2014)Google Scholar
  20. 20.
    Nadeem, S., Saleem, S.: Analytical treatment of unsteady mixed convection MHD flow on a rotating cone in a rotating frame. J. Taiwan Inst. Chem. Eng. 44(4), 596–604 (2013)CrossRefGoogle Scholar
  21. 21.
    Animasaun, I.L.: Double diffusive unsteady convective micropolar flow past a vertical porous plate moving through binary mixture using modified Boussinesq approximation. Ain Shams Eng. J. 7, 755–765 (2016).  https://doi.org/10.1016/j.asej.2015.06.010 CrossRefGoogle Scholar
  22. 22.
    Animasaun, I.L.: Dynamics of unsteady MHD convective flow with thermophoresis of particles and variable thermo-physical properties past a vertical surface moving through binary mixture. Open J. Fluid Dyn. 5, 106–120 (2015).  https://doi.org/10.4236/ojfd.2015.52013 CrossRefGoogle Scholar
  23. 23.
    Animasaun, I.L.: Effects of thermophoresis, variable viscosity and thermal conductivity on free convective heat and mass transfer of non-darcian MHD dissipative Casson fluid flow with suction and nth order of chemical reaction. J. Niger. Math. Soc. 34, 11–31 (2015).  https://doi.org/10.1016/j.jnnms.2014.10.008 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Bohn, M.S., Anderson, R.: Temperature and heat flux distribution in a natural convection enclosure flow. J. Heat Transf. Trans. ASME 108, 471–476 (1986)CrossRefGoogle Scholar
  25. 25.
    Liaqat, A., Baytas, A.C.: Conjugate natural convection in a square enclosure containing volumetric sources. Int. J. Heat Mass Transf. 44(17), 3273–3280 (2001)CrossRefzbMATHGoogle Scholar
  26. 26.
    Kuznetsov, G.V., Sheremet, M.A.: Conjugate heat transfer in an enclosure under the condition of internal mass transfer and in the presence of the local heat source. Int. J. Heat Mass Transf. 52, 1–8 (2009)CrossRefzbMATHGoogle Scholar
  27. 27.
    Sasso, M., Palmieri, G., Amodio, D.: Application of fractional derivative models in linear viscoelastic problems. Mech. Time Depend. Mater. 15(4), 367–387 (2011)CrossRefGoogle Scholar
  28. 28.
    Sloninsky, G.L.: Laws of mechanical relaxation processes in polymers. J. Polym. Sci. 16, 1667–1672 (1967)Google Scholar
  29. 29.
    Bagley, R.L., Torvik, P.J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27, 201–210 (1983)CrossRefzbMATHGoogle Scholar
  30. 30.
    Schiessel, H., Blumen, A.: Hierarchical analogues to fractional relaxation equations. J. Phys. Math. Gen. 26, 5057–5069 (1993)CrossRefGoogle Scholar
  31. 31.
    Song, D.Y., Jiang, T.Q.: Study on the constitutive equation with fractional derivative for the viscoelastic fluids—modified Jeffreys model and its application. Rheol. Acta 37, 512–517 (1998)CrossRefGoogle Scholar
  32. 32.
    Djordjevic, V.D., Jaric, J., Fabry, B., Fredberg, J.J., Stamenovic, D.: Fractional derivatives embody essential features of cell rheological behavior. Ann. Biomed. Eng. 31, 692–699 (2003)CrossRefGoogle Scholar
  33. 33.
    Heymans, N.: Fractional calculus description of non-linear viscoelastic behavior of polymers. Nonlinear Dyn. 38, 221–231 (2004)CrossRefzbMATHGoogle Scholar
  34. 34.
    Liu, H., Oliphant, T.E., Taylor L.: General fractional derivative viscoelastic models applied to vibration elastography. In: Proceedings of IEEE Ultrason Symposium, pp. 933–936 (2003)Google Scholar
  35. 35.
    Chatterjee, A.: Statistical origins of fractional derivatives in viscoelasticity. J. Sound Vib. 284, 1239–1245 (2005)CrossRefGoogle Scholar
  36. 36.
    Pfitzenreiter, T.: A physical basis for fractional derivatives in constitutive equations. Z. Angew. Math. Mech. 84, 284–287 (2004)CrossRefzbMATHGoogle Scholar
  37. 37.
    Kawada, Y., Nagahama, H., Hara, H.: Irreversible thermodynamic and viscoelastic model for power-law relaxation and attenuation of rocks. Tectonophysics 427, 255–263 (2006)CrossRefGoogle Scholar
  38. 38.
    Deka, R.K., Paul, A., Chaliha, A.: Transient free convection flow past vertical cylinder with constant heat flux and mass transfer. Ain Shams Eng. J. 8(4), 643–651 (2015).  https://doi.org/10.1016/j.asej.2015.10.006 CrossRefGoogle Scholar
  39. 39.
    Lorenzo, C.F., Hartley, T.T.: Generalized functions for the fractional calculus. Crit. Rev. Biomed. Eng. 36(1), 39–55 (2008).  https://doi.org/10.1007/bfb0067108 CrossRefGoogle Scholar
  40. 40.
    Stehfest, H.: Algorith 368. Numerical inversion of Laplace transforms. Commun. ACM 13(1), 47–50 (1970)CrossRefGoogle Scholar
  41. 41.
    Fu, Z.J., Chen, W., Yang, H.T.: Boundary particle method for Laplace transformed time fractional diffusion equations. J. Comput. Phys. 235, 52–66 (2013).  https://doi.org/10.1016/j.jcp.2012.10.018 MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Fu, Z.J., Chen, W., Qin, Q.H.: Three boundary meshless methods for heat conduction analysis in nonlinear FGMs with Kirchhoff and Laplace transformation. Adv. Appl. Math. Mech. 4(5), 519–542 (2012).  https://doi.org/10.4208/aamm.10-m1170 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer (India) Private Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Abdus Salam School of Mathematical SciencesGC University LahoreLahorePakistan
  2. 2.Department of Mathematics, Faculty of ScienceZagazig UniversityZagazigEgypt
  3. 3.Department of Mathematical SciencesFederal University of TechnologyAkureNigeria

Personalised recommendations