Skip to main content
Log in

Insight into the Natural Convection Flow Through a Vertical Cylinder Using Caputo Time-Fractional Derivatives

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The variation in temperature distribution with time for the case of the fractional model which models the flow of fluid through a vertical cylinder is considered. This article provides an insight into the natural convective flow of a viscous fluid through a vertical heated cylinder using the fractional differential equation with Caputo derivatives. Analytical solutions for temperature and velocity functions were obtained using Laplace transform and finite Hankel integral transform methods. Stehfest’s algorithm was used to obtain the inverse Laplace transforms. Numerical simulations and graphical illustrations were carried out in order to analyze the influence of the time-fractional derivative on the transport phenomenon. The significant difference between the fractional fluid flow and ordinary fluid at various time (\( t \)) is unraveled. At the initial time, the flow of fractional fluid is faster than the ordinary fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhao, J.Q., Abrahamson, J.: The flow in cylindrical cyclones. Asia Pac. J. Chem. Eng. 11(3–4), 201–222 (2003). https://doi.org/10.1002/apj.5500110403

    Google Scholar 

  2. Sharma, A.K., Velusamy, K., Balaji, C.: Conjugate transient natural convection in a cylindrical enclosure with internal volumetric heat generation. Ann. Nucl. Energy 35(8), 1502–1514 (2008). https://doi.org/10.1016/j.anucene.2008.01.008

    Article  Google Scholar 

  3. Franke, M.E., Hutson, K.E.: Effects of corona discharge on free-convection heat transfer inside a vertical hollow cylinder. J. Heat Transf. 106(2), 346–351 (1984). https://doi.org/10.1115/1.3246679

    Article  Google Scholar 

  4. Roschina, N.A., Uvarov, A.V., Osipov, A.I.: Natural convection in an annulus between coaxial horizontal cylinders with internal heat generation. Int. J. Heat Mass Transf. 48(21–22), 4518–4525 (2005). https://doi.org/10.1016/j.ijheatmasstransfer.2005.05.035

    Article  MATH  Google Scholar 

  5. Bairi, A.: Transient natural 2D convection in a cylindrical cavity with the upper face cooled by thermoelectric peltier effect following an exponential law. Appl. Therm. Eng. 23(4), 431–447 (2003). https://doi.org/10.1016/s1359-4311(02)00207-7

    Article  Google Scholar 

  6. Morgan, V.: The overall convective heat transfer from smooth circular cylinders. Adv. Heat Transf. 11, 199–264 (1975). https://doi.org/10.1016/s0065-2717(08)70075-3

    Article  Google Scholar 

  7. Lemembre, A., Petit, J.P.: Laminar natural convection in a laterally heated and upper cooled vertical cylindrical enclosure. Int. J. Heat Mass Transf. 41(16), 2437–2454 (1998)

    Article  MATH  Google Scholar 

  8. Chen, S.A.H., Humphrey, J.A.C.: Steady, two-dimensional, natural convection in rectangular enclosures with differently heated walls. J. Heat Transf. 109, 400–406 (1987)

    Article  Google Scholar 

  9. Kim, D.M., Viskanta, R.: Effect of wall heat conduction on natural convection heat transfer in a square enclosure. J. Heat Transf. 107, 139–146 (1985)

    Article  Google Scholar 

  10. Vargas, M., Sierra, F.Z., Ramos, E., Avramenko, A.A.: Steady natural convection in a cylindrical cavity. Int. Commun. Heat Mass Transf. 29(2), 213–221 (2002)

    Article  Google Scholar 

  11. Makinde, O.D., Animasaun, I.L.: Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution. Int. J. Therm. Sci. 109, 159–171 (2016)

    Article  Google Scholar 

  12. Makinde, O.D., Animasaun, I.L.: Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution. J. Mol. Liq. 221, 733–743 (2016)

    Article  Google Scholar 

  13. Animasaun, I.L.: 47 nm alumina–water nanofluid flow within boundary layer formed on upper horizontal surface of paraboloid of revolution in the presence of quartic autocatalysis chemical reaction. Alex. Eng. J. 55(3), 2375–2389 (2016)

    Article  Google Scholar 

  14. Koriko, O.K., Omowaye, A.J., Sandeep, N., Animasaun, I.L.: Analysis of boundary layer formed on an upper horizontal surface of a paraboloid of revolution within nanofluid flow in the presence of thermophoresis and Brownian motion of 29 nm CuO. Int. J. Mech. Sci. 124, 22–36 (2017)

    Article  Google Scholar 

  15. Kee, R.J., Landram, C.S., Miles, J.C.: Natural convection of a heat generating fluid within closed vertical cylinders and sphere. J. Heat Transf. Trans. ASME 98(1), 55–61 (1976)

    Article  Google Scholar 

  16. Babu, M.J., Sandeep, N., Saleem, S.: Free convective MHD Cattaneo–Christov flow over three different geometries with thermophoresis and Brownian motion. Alex. Eng. J. 56(4), 659–669 (2017)

    Article  Google Scholar 

  17. Hayat, T., Makhdoom, S., Awais, M., Saleem, S., Rashidi, M.M.: Axisymmetric Powell–Eyring fluid flow with convective boundary condition: optimal analysis. Appl. Math. Mech. 37(7), 919–928 (2016)

    Article  MathSciNet  Google Scholar 

  18. Nadeem, S., Saleem, S.: An optimized study of mixed convection flow of a rotating Jeffrey nanofluid on a rotating vertical cone. J. Comput. Theor. Nanosci. 12(10), 3028–3035 (2015)

    Article  Google Scholar 

  19. Nadeem, S., Saleem, S.: Mixed convection flow of Eyring-Powell fluid along a rotating cone. Res. Phys. 4, 54–62 (2014)

    Google Scholar 

  20. Nadeem, S., Saleem, S.: Analytical treatment of unsteady mixed convection MHD flow on a rotating cone in a rotating frame. J. Taiwan Inst. Chem. Eng. 44(4), 596–604 (2013)

    Article  Google Scholar 

  21. Animasaun, I.L.: Double diffusive unsteady convective micropolar flow past a vertical porous plate moving through binary mixture using modified Boussinesq approximation. Ain Shams Eng. J. 7, 755–765 (2016). https://doi.org/10.1016/j.asej.2015.06.010

    Article  Google Scholar 

  22. Animasaun, I.L.: Dynamics of unsteady MHD convective flow with thermophoresis of particles and variable thermo-physical properties past a vertical surface moving through binary mixture. Open J. Fluid Dyn. 5, 106–120 (2015). https://doi.org/10.4236/ojfd.2015.52013

    Article  Google Scholar 

  23. Animasaun, I.L.: Effects of thermophoresis, variable viscosity and thermal conductivity on free convective heat and mass transfer of non-darcian MHD dissipative Casson fluid flow with suction and nth order of chemical reaction. J. Niger. Math. Soc. 34, 11–31 (2015). https://doi.org/10.1016/j.jnnms.2014.10.008

    Article  MathSciNet  MATH  Google Scholar 

  24. Bohn, M.S., Anderson, R.: Temperature and heat flux distribution in a natural convection enclosure flow. J. Heat Transf. Trans. ASME 108, 471–476 (1986)

    Article  Google Scholar 

  25. Liaqat, A., Baytas, A.C.: Conjugate natural convection in a square enclosure containing volumetric sources. Int. J. Heat Mass Transf. 44(17), 3273–3280 (2001)

    Article  MATH  Google Scholar 

  26. Kuznetsov, G.V., Sheremet, M.A.: Conjugate heat transfer in an enclosure under the condition of internal mass transfer and in the presence of the local heat source. Int. J. Heat Mass Transf. 52, 1–8 (2009)

    Article  MATH  Google Scholar 

  27. Sasso, M., Palmieri, G., Amodio, D.: Application of fractional derivative models in linear viscoelastic problems. Mech. Time Depend. Mater. 15(4), 367–387 (2011)

    Article  Google Scholar 

  28. Sloninsky, G.L.: Laws of mechanical relaxation processes in polymers. J. Polym. Sci. 16, 1667–1672 (1967)

    Google Scholar 

  29. Bagley, R.L., Torvik, P.J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27, 201–210 (1983)

    Article  MATH  Google Scholar 

  30. Schiessel, H., Blumen, A.: Hierarchical analogues to fractional relaxation equations. J. Phys. Math. Gen. 26, 5057–5069 (1993)

    Article  Google Scholar 

  31. Song, D.Y., Jiang, T.Q.: Study on the constitutive equation with fractional derivative for the viscoelastic fluids—modified Jeffreys model and its application. Rheol. Acta 37, 512–517 (1998)

    Article  Google Scholar 

  32. Djordjevic, V.D., Jaric, J., Fabry, B., Fredberg, J.J., Stamenovic, D.: Fractional derivatives embody essential features of cell rheological behavior. Ann. Biomed. Eng. 31, 692–699 (2003)

    Article  Google Scholar 

  33. Heymans, N.: Fractional calculus description of non-linear viscoelastic behavior of polymers. Nonlinear Dyn. 38, 221–231 (2004)

    Article  MATH  Google Scholar 

  34. Liu, H., Oliphant, T.E., Taylor L.: General fractional derivative viscoelastic models applied to vibration elastography. In: Proceedings of IEEE Ultrason Symposium, pp. 933–936 (2003)

  35. Chatterjee, A.: Statistical origins of fractional derivatives in viscoelasticity. J. Sound Vib. 284, 1239–1245 (2005)

    Article  Google Scholar 

  36. Pfitzenreiter, T.: A physical basis for fractional derivatives in constitutive equations. Z. Angew. Math. Mech. 84, 284–287 (2004)

    Article  MATH  Google Scholar 

  37. Kawada, Y., Nagahama, H., Hara, H.: Irreversible thermodynamic and viscoelastic model for power-law relaxation and attenuation of rocks. Tectonophysics 427, 255–263 (2006)

    Article  Google Scholar 

  38. Deka, R.K., Paul, A., Chaliha, A.: Transient free convection flow past vertical cylinder with constant heat flux and mass transfer. Ain Shams Eng. J. 8(4), 643–651 (2015). https://doi.org/10.1016/j.asej.2015.10.006

    Article  Google Scholar 

  39. Lorenzo, C.F., Hartley, T.T.: Generalized functions for the fractional calculus. Crit. Rev. Biomed. Eng. 36(1), 39–55 (2008). https://doi.org/10.1007/bfb0067108

    Article  Google Scholar 

  40. Stehfest, H.: Algorith 368. Numerical inversion of Laplace transforms. Commun. ACM 13(1), 47–50 (1970)

    Article  Google Scholar 

  41. Fu, Z.J., Chen, W., Yang, H.T.: Boundary particle method for Laplace transformed time fractional diffusion equations. J. Comput. Phys. 235, 52–66 (2013). https://doi.org/10.1016/j.jcp.2012.10.018

    Article  MathSciNet  MATH  Google Scholar 

  42. Fu, Z.J., Chen, W., Qin, Q.H.: Three boundary meshless methods for heat conduction analysis in nonlinear FGMs with Kirchhoff and Laplace transformation. Adv. Appl. Math. Mech. 4(5), 519–542 (2012). https://doi.org/10.4208/aamm.10-m1170

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Animasaun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, N.A., Elnaqeeb, T., Animasaun, I.L. et al. Insight into the Natural Convection Flow Through a Vertical Cylinder Using Caputo Time-Fractional Derivatives. Int. J. Appl. Comput. Math 4, 80 (2018). https://doi.org/10.1007/s40819-018-0512-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-018-0512-z

Keywords

Navigation