Adaptive Consensus Control of High-Order Uncertain Nonlinear Multi-agent Systems with Fuzzy Dead-Zone

Abstract

This paper considers the distributed consensus control of nth-order uncertain nonlinear multi-agent systems (MASs) with fuzzy dead-zone (DZ). Unlike the existing works which describes the DZ constraint by the conventional deterministic models, this work describes the DZ by the fuzzy and uncertain value. Therefore, some imposed restricting assumptions on the DZ parameters such as known bounds of the DZ slopes, or linear and deterministic model for DZ description which exist in the previous works are removed in this work. In the proposed scheme, the neural network (NN) is invoked to model the uncertain nonlinearities of the follower agents and uncertain interaction of their neighbors. To decrease the number of adaptive parameters and computational load, maximum norm of the weight coefficients of the NN is considered as an adjustable parameter and tuned online. Also, to decrease the controller complexity and eliminate the repeated derivatives of nonlinear functions in the controller, the dynamic surface control (DSC) method is used to develop the proposed distributed consensus scheme. Stability analysis based on the Lyapunov direct method guarantees that all of the signals in the closed-loop MAS are semi-globally uniformly ultimately bounded and the consensus error converges to a bound dependent on the design parameters. Therefore, appropriate choice of the design parameters makes the bound small. Simulation results on a well-known example demonstrate the effectiveness of the developed consensus algorithm.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Wang, F., Zhang, Y., Zhang, L., Zhang, J., Huang, Y.: Finite-time consensus of stochastic nonlinear multi-agent systems. Int. J. Fuzzy Syst. 22, 77–88 (2020)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Bu, X., Yu, Q., Hou, Z., Qian, W.: Model free adaptive iterative learning consensus tracking control for a class of nonlinear multiagent systems. IEEE Trans. Syst. Man Cybernet. Syst. 49(4), 677–686 (2019)

    Article  Google Scholar 

  3. 3.

    Li, S., Wang, X.: Finite time consensus and collision avoidance control algorithms for multiple AUVs. Automatica 49(11), 3359–3367 (2013)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Ren, C.-E., Chen, C.L.P., Du, T., Guan, Y.: Fuzzy adaptive leader-following consensus control for nonlinear multi-agent systems with unknown control directions. Int. J. Fuzzy Syst. 21, 2066–2076 (2019)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Sieber, D., Hirche, S.: Human-guided multirobot cooperative manipulations. IEEE Trans. Control Syst. Technol. 27(4), 1492–1509 (2019)

    Article  Google Scholar 

  6. 6.

    Prorok, A., Hsieh, M.A., Kumar, V.: The impact of diversity on optimal control policies for heterogeneous robot swarms. IEEE Trans. Rob. 33(2), 346–358 (2017)

    Article  Google Scholar 

  7. 7.

    Wu, H., Li, J., Chen, J.: Distributed adaptive iterative learning consensus for uncertain topological multi-agent systems based on T-S fuzzy models. Int. J. Fuzzy Syst. 20, 2605–2619 (2018)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Sun, N., Yang, T., Chen, H., Fang, Y., Qian, Y.: Adaptive anti-swing and positioning control for 4-DOF rotary cranes subject to uncertain/unknown parameters with hardware experiments. IEEE Trans. Syst. Man Cybernet. Syst. 49(7), 1309–1321 (2019)

    Article  Google Scholar 

  9. 9.

    Zhang, H., Zhou, X., Wang, Z., Yan, H., Sun, J.: Adaptive consensus-based distributed target tracking with dynamic cluster in sensor networks. IEEE Trans. Cybernet. 49(5), 1580–1591 (2019)

    Article  Google Scholar 

  10. 10.

    Zhang, Y., Wang, D., Peng, Z.: Consensus maneuvering for a class of nonlinear multivehicle systems in strict-feedback form. IEEE Trans. Cybernet. 49(5), 1759–1767 (2019)

    Article  Google Scholar 

  11. 11.

    Pan, Y., Du, P., Xue, H., Lam, H.-K.: Singularity-free fixed-time fuzzy control for robotic systems with user-defined performance. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2999746

    Article  Google Scholar 

  12. 12.

    Andretti, A., Caicazzo, B., Petrillo, A., Santini, S., Vaccaro, A.: Decentralized smart grid voltage control by synchronization of linear multiagent systems in the presence of time-varying latencies. Electronics 8, 12 (2019)

    Google Scholar 

  13. 13.

    Shahvali, M., Shojaei, K.: Distributed control of networked uncertain Euler-Lagrange systems in the presence of stochastic disturbances: a prescribed performance approach. Nonlinear Dyn. 90, 697–715 (2017)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Hua, C.C., Li, K., Guan, X.P.: Leader-following output consensus of high-order nonlinear multiagent systems. IEEE Trans. Autom. Control 64(3), 1156–1161 (2019)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Huang, J., Song, Y., Wang, W., Wen, C., Li, G.: Fully distributed adaptive consensus control of a class of high-order nonlinear systems with a directed topology and unknown control directions. IEEE Trans. Cybernet. 48(8), 2349–2356 (2018)

    Article  Google Scholar 

  16. 16.

    Sun, M., Chen, D.: Robust protocol-based H consensus control of time-varying uncertain multiagent systems subject to missing measurements. Complexity (2019). https://doi.org/10.1155/2019/7121652

    Article  MATH  Google Scholar 

  17. 17.

    Shen, Q., Shi, P.: Distributed command filtered backstepping consensus tracking control of nonlinear multi-agent systems in strict-feedback form. Automatica 53, 120–124 (2015)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Wang, W., Tong, S.: Adaptive fuzzy bounded control for consensus of multiple strict-feedback nonlinear systems. IEEE Trans. Cybernet. 48(2), 522–531 (2018)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Du, P., Pan, Y., Li, H., Lam, H.-K.: Nonsingular finite-time event-triggered fuzzy control for large-scale nonlinear systems. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2992632

    Article  Google Scholar 

  20. 20.

    Bessa, W.M., de Paula, A.S., Savi, M.A.: Sliding mode control with adaptive fuzzy dead-zone compensation for uncertain chaotic systems. Nonlinear Dyn. 70, 1989–2001 (2012)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Du, P., Liang, H., Zhao, S., Ahn, C.-K.: Neural-based decentralized adaptive finite-time control for nonlinear large-scale systems with time-varying output constraints. IEEE Trans. Syst. Man Cybernet. (2020). https://doi.org/10.1109/TSMC.2019.2918351

    Article  Google Scholar 

  22. 22.

    Zhou, N., Liu, Y.J., Tong, S.C.: Adaptive fuzzy output feedback control of uncertain nonlinear systems with nonsymmetric dead-zone input. Nonlinear Dyn. 63, 771–778 (2011)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Cui, G., Xu, S., Ma, Q., Li, Y., Zhang, Z.: Prescribed performance distributed consensus control for nonlinear multi-agent systems with unknown dead-zone input. Int. J. Control 91(5), 1053–1065 (2018)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Hua, C., Zhang, L., Guan, C.: Distributed adaptive neural network output tracking of leader-following high-order stochastic nonlinear multi agent systems with Unknown dead-zone input. IEEE Trans. Cybernet. 47(1), 177–185 (2017)

    Article  Google Scholar 

  25. 25.

    Shen, Q., Shi, P.: Output consensus control of multi-agent systems with unknown nonlinear dead zone. IEEE Trans. Syst. Man Cybernet. Syst. 46(10), 1329–1337 (2016)

    Article  Google Scholar 

  26. 26.

    Shen, Q., Shi, P., Shi, Y., Zhang, J.: Adaptive output consensus with saturation and dead-zone and its applications. IEEE Trans. Industr. Electron. 64(6), 5025–5034 (2017)

    Article  Google Scholar 

  27. 27.

    Wang, W., Liang, H., Zhang, Y., Li, T.: Adaptive cooperative control for a class of nonlinear multi-agent systems with dead-zone and input delay. Nonlinear Dyn. 96, 2707–2719 (2019)

    Article  Google Scholar 

  28. 28.

    Wang, F., Liu, Z., Zhang, Y., Chen, B.: Distributed adaptive coordination control for uncertain nonlinear multi-agent systems with dead-zone input. J. Franklin Inst. 353(10), 2270–2289 (2016)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Shahnazi, R., Wang, W.: Distributed adaptive FBC of uncertain nonaffine multiagent systems preceded by unknown input nonlinearities with unknown gain sign. IEEE Trans. Syst. Man Cybernet. Syst. (2018). https://doi.org/10.1109/TSMC.2018.2836871

    Article  Google Scholar 

  30. 30.

    Liu, Z., Wang, F., Zhang, Y., Chen, X., Chen, C.L.P.: Adaptive tracking control for a class of nonlinear systems with fuzzy dead-zone input. IEEE Trans. Fuzzy Syst. 23(1), 193–204 (2015)

    Article  Google Scholar 

  31. 31.

    Wang, L., Li, H., Zhou, Q., Lu, R.: Adaptive fuzzy control for non-strict feedback systems with unmodeled dynamics and fuzzy dead-zone via output feedback. IEEE Trans. Cybernet. 47(9), 2400–2412 (2017)

    Article  Google Scholar 

  32. 32.

    Wang, F., Liu, Z., Zhang, Y., Chen, X., Chen, C.L.P.: Adaptive fuzzy dynamic surface control for a class of nonlinear systems with fuzzy dead-zone and dynamic uncertainties. Nonlinear Dyn. 79, 1693–1709 (2015)

    Article  Google Scholar 

  33. 33.

    Zhang, H., Lewis, F.L.: Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics. Automatica 48, 1423–1439 (2012)

    MathSciNet  Article  Google Scholar 

  34. 34.

    Polycarpou, M.M.: Stable adaptive neural control scheme for nonlinear systems. IEEE Trans. Autom. Control 41(3), 447–451 (1996)

    MathSciNet  Article  Google Scholar 

  35. 35.

    Slotine, J.J.E., Li, W.: Applied nonlinear control. Prentice Hall, Englewood Cliffs, NJ (1991)

    Google Scholar 

  36. 36.

    Wang, J., Huang, J.: Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Netw. 16(1), 195–202 (2005)

    Article  Google Scholar 

  37. 37.

    Spong, W.M., Hutchinson, S., Vidyasagar, M.: Robot modeling and control. Wiley, New York (2006)

    Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maryam Shahriari-kahkeshi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shahriari-kahkeshi, M., Afrush, A. & Pham, VT. Adaptive Consensus Control of High-Order Uncertain Nonlinear Multi-agent Systems with Fuzzy Dead-Zone. Int. J. Fuzzy Syst. (2021). https://doi.org/10.1007/s40815-020-01005-6

Download citation

Keywords

  • Consensus problem
  • Distributed control
  • Fuzzy dead-zone
  • Multi agent systems