Predictive Trajectory Tracking Control of Autonomous Underwater Vehicles Based on Variable Fuzzy Predictor

Abstract

A variable-fuzzy-predictor-based predictive control approach is presented to solve the dynamic trajectory tracking problem of an autonomous underwater vehicle (AUV) in a three-dimensional underwater environment. To adapt to the characteristics of AUV’s motion such as nonlinearity and time-varying dynamics, a predictive controller framework is proposed based on a variable fuzzy predictor whose structure and parameters are both online adjusted. To achieve a precise estimation of AUV’s motion, the variable multi-dimensional fuzzy predictor employs a sliding data window (SDW) as the system status observer, and uses the Delaunay triangulation partition method for model construction. The predictive control scheme takes advantages of the constraints-tolerance of predictive control, the uncertainty immunity of fuzzy logic calculation, and the adaptability of variable fuzzy model. The comparative simulation of the AUV trajectory tracking control is conducted in the scenario of underwater operation of an offshore platform, and the result demonstrates the feasibility and effectiveness of the proposed control strategy in respect of accuracy and stability.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    Xiang, X., Niu, Z., Lapierre, L., Zuo, M.: Hybrid underwater robotic vehicles: the state-of-the-art and future trends. HKIE Trans. 22(2), 103–116 (2015)

    Article  Google Scholar 

  2. 2.

    Bovio, E., Cecchi, D., Baralli, F.: Autonomous underwater vehicles for scientific and naval operations. Annu. Rev. Control 30(2), 117–130 (2006)

    Article  Google Scholar 

  3. 3.

    Wynn, R.B., Huvenne, V.A., Le Bas, T.P., Murton, B.J., Connelly, D.P., Bett, B.J., Ruhl, H.A., Morris, K.J., Peakall, J., Parsons, D.R., et al.: Autonomous underwater vehicles (AUVs): their past, present and future contributions to the advancement of marine geoscience. Mar. Geol. 352, 451–468 (2014)

    Article  Google Scholar 

  4. 4.

    Zhang, F., Marani, G., Smith, R.N., Choi, H.T.: Future trends in marine robotics. IEEE Robot. Autom. Mag. 22(1), 14–122 (2015)

    Article  Google Scholar 

  5. 5.

    Wang, N., Lv, S., Er, M.J., Chen, W.H.: Fast and accurate trajectory tracking control of an autonomous surface vehicle with unmodeled dynamics and disturbances. IEEE Trans. Intell. Veh. 1(3), 230–243 (2016)

    Article  Google Scholar 

  6. 6.

    Wang, N., Gao, Y., Sun, Z., Zheng, Z.J.: Nussbaum-based adaptive fuzzy tracking control of unmanned surface vehicles with fully unknown dynamics and complex input nonlinearities. Int. J. Fuzzy Syst. 20(1), 259–268 (2018)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Yu, C., Xiang, X., Zhang, Q., Xu, G.: Adaptive fuzzy trajectory tracking control of an under-actuated autonomous underwater vehicle subject to actuator saturation. Int. J. Fuzzy Syst. 20(1), 269–279 (2018)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Wang, J., Wang, C., Wei, Y., Zhang, C.: Command filter based adaptive neural trajectory tracking control of an underactuated underwater vehicle in three-dimensional space. Ocean Eng. 180, 175–186 (2019)

    Article  Google Scholar 

  9. 9.

    Jiang, B., Karimi, H.R., Kao, Y., Gao, C.: Takagi–Sugeno model based event-triggered fuzzy sliding mode control of networked control systems with semi-Markovian switchings. IEEE Trans. Fuzzy Syst. 28(4), 673–683 (2020)

    Article  Google Scholar 

  10. 10.

    Jiang, B., Karimi, H.R., Kao, Y., Gao, C.: A novel robust fuzzy integral sliding mode control for nonlinear semi-Markovian jump T–S fuzzy systems. IEEE Trans. Fuzzy Syst. 26(6), 3594–3604 (2018)

    Article  Google Scholar 

  11. 11.

    Shen, C., Shi, Y., Buckham, B.: Trajectory tracking control of an autonomous underwater vehicle using Lyapunov-based model predictive control. IEEE Trans. Ind. Electron. 65(7), 5796–5805 (2018)

    Article  Google Scholar 

  12. 12.

    Gan, W., Zhu, D., Ji, D.: QPSO-model predictive control-based approach to dynamic trajectory tracking control for unmanned underwater vehicles. Ocean Eng. 158, 208–220 (2018)

    Article  Google Scholar 

  13. 13.

    Wu, Z., Jiang, B., Kao, Y.: Finite-time \(H_\infty\) filtering for It\({\hat{o}}\) stochastic Markovian jump systems with distributed time-varying delays based on optimization algorithm. IET Control Theory Appl. 13(5), 702–710 (2019)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Afram, A., Janabi-Sharifi, F., Fung, A.S., Raahemifar, K.: Artificial neural network (ANN) based model predictive control (MPC) and optimization of HVAC systems: A state of the art review and case study of a residential HVAC system. Energy Build. 141, 96–113 (2017)

    Article  Google Scholar 

  15. 15.

    Heshmati-Alamdari, S., Karras, G.C., Marantos, P., Kyriakopoulos, K.J.: A robust predictive control approach for underwater robotic vehicles. IEEE Trans. Control Syst. Technol. (2019). https://doi.org/10.1109/TCST.2019.2939248

    Article  Google Scholar 

  16. 16.

    Yao, F., Yang, C., Liu, X., Zhang, M.: Experimental evaluation on depth control using improved model predictive control for autonomous underwater vehicle (AUVs). Sensors 18(7), 2321 (2018)

    Article  Google Scholar 

  17. 17.

    Shen, C., Shi, Y., Buckham, B.: Path-following control of an AUV: a multiobjective model predictive control approach. IEEE Trans. Control Syst. Technol. 27(3), 1334–1342 (2019)

    Article  Google Scholar 

  18. 18.

    Wu, Z., Karimi, H.R., Dang, C.: An approximation algorithm for graph partitioning via deterministic annealing neural network. Neural Netw. 117, 191–200 (2019)

    Article  Google Scholar 

  19. 19.

    Wu, Z., Karimi, H.R., Dang, C.: A Deterministic annealing neural network algorithm for the minimum concave cost transportation problem. IEEE Trans. Neural Netw. Learn. (2020). https://doi.org/10.1109/TNNLS.2019.2955137

    Article  Google Scholar 

  20. 20.

    Jiang, B., Karimi, H.R., Kao, Y., Gao, C.: Adaptive control of nonlinear semi-Markovian jump T–S fuzzy systems with immeasurable premise variables via sliding mode observer. IEEE Trans. Cybern. 50(2), 810–820 (2020)

    Article  Google Scholar 

  21. 21.

    Loebis, D., Naeem, W., Sutton, R., Chudley, J., Tetlow, S.: Soft computing techniques in the design of a navigation, guidance and control system for an autonomous underwater vehicle. Int. J. Adapt. Control 21, 205–236 (2007)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Yin, J.C., Perakis, A.N., Wang, N.: A real-time ship roll motion prediction using wavelet transform and variable RBF network. Ocean Eng. 160, 10–19 (2018)

    Article  Google Scholar 

  23. 23.

    Esfahani, H.N.: Robust model predictive control for autonomous underwater vehicle C Manipulator system with fuzzy compensator. Pol. Marit. Res. 26(2), 104–114 (2019)

    Article  Google Scholar 

  24. 24.

    Yu, C., Xiang, X., Wilson, P., Zhang, Q.: Guidance-error-based robust fuzzy adaptive control for bottom following of a flight-style AUV with saturated actuator dynamics. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2018.2890582

    Article  Google Scholar 

  25. 25.

    Kuo, Y., Citra Resmi, I.E.: Model predictive control based on a TakagiCSugeno fuzzy model for nonlinear systems. Int. J. Fuzzy Syst. 21, 556–570 (2019)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Rubio-Solis, A., Melin, P., Martinez-Hernandez, U., Panoutsos, G.: General type-2 radial basis function neural network: a data-driven fuzzy model. IEEE Trans. Fuzzy Syst. 27(2), 333–347 (2019)

    Article  Google Scholar 

  27. 27.

    Elshafei, A.L., Karray, F.: Variable-structure-based fuzzy-logic identification of a class of nonlinear systems. IEEE Trans. Contr. Syst. Technol. 13(4), 646–653 (2005)

    Article  Google Scholar 

  28. 28.

    Yin, J.C., Wang, N., Perakis, A.N.: A real-time sequential ship roll prediction scheme based on adaptive sliding data window. IEEE Trans. Syst. Man Cybern. Syst. 48(12), 2115–2125 (2018)

    Article  Google Scholar 

  29. 29.

    Liu, N., Lin, B., Lv, G., Zhu, A., Zhou, L.: A Delaunay triangulation algorithm based on dual-spatial data organization. PFGCJ. Photogramm. Rem. 87(1–2), 19–31 (2019)

    Google Scholar 

  30. 30.

    Lee, D.T., Schachter, B.J.: Two algorithms for constructing a Delaunay triangulation. Int. J. Comput. Inf. Sci. 9(3), 219–242 (1980)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Kar, D.C.: On pruning of data in a sliding window for computing a rank-order element. IEEE Signal Proc. Lett. 24(7), 1005–1009 (2017)

    Article  Google Scholar 

  32. 32.

    Huang, H., Zhou, Z., Li, J., Tang, Q., Zhang, W., Gang, W.: Investigation on the mechanical design and manipulation hydrodynamics for a small sized, single body and streamlined I-AUV. Ocean Eng. (2019). https://doi.org/10.1016/j.oceaneng.2019.06.011

    Article  Google Scholar 

  33. 33.

    Li, Y., Zhang, H., Huang, B., Han, J.: A distributed Newton–Raphson-based coordination algorithm for multi-agent optimization with discrete-time communication. Neural Comput. Appl. 2018, 1–15 (2018)

    Google Scholar 

  34. 34.

    Du, L., Zhang, Q., Gao, C., Chen, H., Yin, Q., Ding, K., Fu, Y., Qu, D., Guo, F.: Response characteristics prediction of surge protective device based on NARX neural network. IEEE Trans. Electromag. Comput. 62(1), 74–82 (2020)

    Article  Google Scholar 

  35. 35.

    Truong, B.C., Van Thuan, N., Hau, N.H., McAleer, M.: Applications of the Newton–Raphson method in decision sciences and education. Adv. Decis. Sci. 23(4), 1–28 (2019)

    Google Scholar 

  36. 36.

    Chen, Y., Luo, G., Mei, Y., Yu, J., Su, X.: UAV path planning using artificial potential field method updated by optimal control theory. Int. J. Syst. Sci. 47(6), 1407–1420 (2016)

    MathSciNet  Article  Google Scholar 

  37. 37.

    Sun, J., Tang, J., Lao, S.: Collision avoidance for cooperative UAVs with optimized artificial potential field algorithm. IEEE Access 5, 18382–18390 (2017)

    Article  Google Scholar 

  38. 38.

    Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2004)

    Google Scholar 

  39. 39.

    Hu, Z., Zhu, D., Cui, C., Sun, B.: Trajectory tracking and re-planning with model predictive control of autonomous underwater vehicles. J. Navig. 72(2), 321–341 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant 51879024, and the Liaoning Provincial Natural Science Foundation of China under Grant 20180520034.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jianchuan Yin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yin, J., Wang, N. Predictive Trajectory Tracking Control of Autonomous Underwater Vehicles Based on Variable Fuzzy Predictor. Int. J. Fuzzy Syst. (2020). https://doi.org/10.1007/s40815-020-00898-7

Download citation

Keywords

  • Predictive control
  • Autonomous underwater vehicle
  • Sliding data window
  • Variable fuzzy model