Global Path Planning and Path-Following for Wheeled Mobile Robot Using a Novel Control Structure Based on a Vision Sensor

Abstract

This paper presents a novel design for the kinematic control structure of the wheeled mobile robot (WMR) path planning and path-following. The proposed system is focused on the implementation of practical real-time model-free algorithms based on visual servoing. The mainframe of this study is to implement a novel kinematic control structure based on visual sevoing and hybrid algorithms in real-time mobile robot applications. First, the structure of the proposed algorithm based on the visual information extracted from an overhead camera has been addressed. Then, the classification process of robot position and orientation, target, and obstacles has been addressed. Second, the path planning algorithms’ initial parameters and obstacles-free path coordinates have been determined by visual information extracted from images in real time. In this step, the interval type-2 fuzzy inference (IT2FIS) algorithm and various algorithms used in path planning have been compared and their performances have been analyzed. The third stage handled the path-following process using a novel control structure for keeping up the robot on the generated path. In this step, the proposed approach is compared with fuzzy Type-1/Type-2 and fuzzy-PID control algorithms, and their results have been analyzed statistically. The proposed system has been successfully implemented on several maps. The experimental results show that the developed design is valid in generating collision-free paths efficiently and consistently and able to guide the robot to follow the path in real time.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Umoh, U., Udoh, S., Isong, E., Asuquo, R.: PSO Optimized interval Type-2 Fuzzy Design for Elections Results Prediction. Int. J. Log. Syst. (2019). https://doi.org/10.5121/ijfls.2019.9101

    Article  Google Scholar 

  2. 2.

    Elsheikh, E.A., El-Bardini, M.A., Fkirin, M.A.: Practical design of a path following for a non-holonomic mobile robot based on a decentralized fuzzy logic controller and multiple cameras. Arab J. Sci. Eng. 41, 3215–3229 (2016)

    Article  Google Scholar 

  3. 3.

    Souissi O, et al., Path planning: A 2013 survey numerical analysis view project scheduling under resources and temporal constraints view project path planning: a 2013 survey, (2013)

  4. 4.

    Dönmez, E., Kocamaz, A.F., Dirik, M.: A vision-based real-time mobile robot controller design based on Gaussian Function for indoor environment. Arab. J. Sci. Eng. 43, 1–16 (2017)

    Google Scholar 

  5. 5.

    Cherroun, L., Boumehraz, M., Kouzou, A.: Mobile robot path planning based on optimized fuzzy logic controllers. Springer, Singapore (2019)

    Google Scholar 

  6. 6.

    Jhang, J.-Y., Lin, C.-J., Lin, C.-T., Young, K.-Y.: Navigation control of mobile robots using an interval type-2 fuzzy controller based on dynamic-group particle Swarm Optimization. Int. J. Control Autom. Syst. 16(5), 2446–2457 (2018)

    Article  Google Scholar 

  7. 7.

    Han, J., Seo, Y.: Mobile robot path planning with surrounding point set and path improvement. Appl. Soft Comput. J. 57, 35–47 (2017)

    Article  Google Scholar 

  8. 8.

    Patle, B.K., Parhi, D.R.K., Jagadeesh, A., Kashyap, S.K.: Application of probability to enhance the performance of fuzzy-based mobile robot navigation. Appl. Soft Comput. 75, 265–283 (2018)

    Article  Google Scholar 

  9. 9.

    Kala, R., Shukla, A., Tiwari, R.: Robotic path planning in static environment using hierarchical multi-neuron heuristic search and probability-based fitness. Neurocomputing 74(14–15), 2314–2335 (2011)

    Article  Google Scholar 

  10. 10.

    Duchon, F., et al.: Path planning with modified A star algorithm for a mobile robot. Proced. Eng. 96, 59–69 (2014)

    Article  Google Scholar 

  11. 11.

    Moreno, L., Armingol, J.M., Garrido, S., La Escalera, A., Salichs, M.A.: A genetic algorithm for mobile robot localization using ultrasonic sensors. J. Intell. Robot. Syst. Theory Appl. 34(2), 135–154 (2002)

    Article  Google Scholar 

  12. 12.

    S. A. Fadzli, S. I. Abdulkadir, M. Makhtar, and A. A. Jamal, “Robotic Indoor Path Planning using Dijkstra’ s Algorithm with Multi-Layer Dictionaries,” pp. 1–4, 2015. https://doi.org/10.1109/ICISSEC.2015.7371031

  13. 13.

    Kavraki, L.E., Švestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  14. 14.

    Naderi, K., Rajamäki, J., Hämäläinen P., RT-RRT*: a real-time path planning algorithm based on RRT*.” (2015). https://doi.org/10.1145/2822013.2822036

  15. 15.

    Bruce, J., Veloso, M.: Real-time randomized path planning for robot navigation. IEEE/RSJ Int. Conf. Intell. Robot. Syst. 3, 2383–2388 (2002)

    Google Scholar 

  16. 16.

    Vinet L., Zhedanov A.: Rapidly-exploring random trees: a new tool for path planning. J. Phys. A Math. Theor., 2011. http://msl.cs.illinois.edu/~lavalle/papers/Lav98c.pdf

  17. 17.

    Dönmez E., Kocamaz A.F., Dirik M.: “Bi-RRT path extraction and curve-fitting smooth with visual based configuration space mapping,” in IDAP 2017—International Artificial Intelligence and Data Processing Symposium. Malatya, Turkey (2017). https://doi.org/10.1109/IDAP.2017.8090214

  18. 18.

    Weerakoon, T., Ishii, K., Nassiraei, A.A.F.: An artificial potential field based mobile robot navigation method to prevent from deadlock. J. Artif. Intell. Soft. Comput. Res 5(3), 189–203 (2015)

    Article  Google Scholar 

  19. 19.

    Martínez, R., Castillo, O., Aguilar, L.T.: Intelligent control for a perturbed autonomous wheeled mobile robot using type-2 fuzzy logic and genetic algorithms. J. Autom. Mob. Robot. Intell. Syst. 2, 12–22 (2008)

    Google Scholar 

  20. 20.

    Abiyev, R.H., Erin, B., Denker, A.: Navigation of mobile robot using type-2 fuzzy system. In: Huang, D.-S., Hussain, A., Han, K., Gromiha, M.M. (eds.) Intelligent computing methodologies, vol. 10363, pp. 15–26. Springer International Publishing, Cham (2017)

    Google Scholar 

  21. 21.

    Liao, T.W.: A procedure for the generation of interval type-2 membership functions from data. Appl. Soft Comput. J. 52, 925–936 (2017)

    Article  Google Scholar 

  22. 22.

    Ider, M.: Type-2 fuzzy logic control for a mobile robot tracking a moving target. MJMS. 3, 57–65 (2015)

    Google Scholar 

  23. 23.

    Srinivasan K., Gu J.: Multiple sensor fusion in mobile robot localization, 2007 Can. Conf. Electr. Comput. Eng., 1207–1210 (2007)

  24. 24.

    Almasri, M., Elleithy, K., Alajlan, A.: Sensor fusion based model for collision free mobile robot navigation. Sensors 16(1), 24 (2016)

    Article  Google Scholar 

  25. 25.

    ShitsukaneA., Cheruiyot W., Otieno C., Mvurya M.: Fuzzy logic sensor fusion for obstacle avoidance mobile robot,” 2018 IST-Africa Week Conf., no. May, p. Page 1 of 8-Page 8 of 8, 2018

  26. 26.

    Fu W.:Visual servoing for mobile robots navigation with collision avoidance and field-of-view constraints To cite this version: Intégrative et Systèmes Complexes Visual Servoing for Mobile Robots Navigation with Collision Avoidance and Field-of-View Constraint,” 2016. https://www.researchgate.net/publication/325333817_Fuzzy_Logic_Sensor_Fusion_for_Obstacle_Avoidance_Mobile_Robot

  27. 27.

    Aye YY.: Design of an image-based fuzzy controller for parking problems of a car-like mobile robot,” no. March, 2017. http://eprints.lib.okayama-u.ac.jp/files/public/5/55101/20170524144712242504/K0005548_fulltext.pdf

  28. 28.

    Ziaei, Z., Oftadeh, R., Mattila, J.: Vision-based path coordination for multiple mobile robots with four steering wheels using an overhead camera. IEEE/ASME Int Conf Adv Intell Mechatronics 2015, 261–268 (2015)

    Google Scholar 

  29. 29.

    Elsheikh, E.A., El-Bardini, M.A., Fkirin, M.A.: Practical design of a path following for a non-holonomic mobile robot based on a decentralized fuzzy logic controller and multiple cameras. Arab. J. Sci. Eng. 41(8), 3215–3229 (2016)

    Article  Google Scholar 

  30. 30.

    XieJ., Nashashibi F., Parent M., Favrot OG., A real-time robust global localization for autonomous mobile robots in large environments, In: 11th International Conference on Control, Automation, Robotics and Vision, ICARCV 2010, 2010.

  31. 31.

    Baklouti, N., John, R., Alimi, A.: Interval type-2 fuzzy logic control of mobile robots. J. Intell. Learn. Syst. Appl. 04(November), 291–302 (2012)

    Google Scholar 

  32. 32.

    Wang, M., Liu, J.N.K.: Fuzzy logic-based real-time robot navigation in an unknown environment with dead ends. Rob. Auton. Syst. 56(7), 625–643 (2008)

    Article  Google Scholar 

  33. 33.

    Omrane, H., Masmoudi, M.S., Masmoudi, M.: Fuzzy logic based control for autonomous mobile. Comput. Intell. Neurosci. 2016, 1–10 (2016)

    Article  Google Scholar 

  34. 34.

    Liang, Q., Mendel, J.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8(5), 535–550 (2000)

    Article  Google Scholar 

  35. 35.

    Castillo O., Melin P., Kacprzyk J., Pedrycz W.: Type-2 fuzzy logic: theory and applications, In: 2007 IEEE International Conference on Granular Computing (GRC 2007), 145–145 (2007)

  36. 36.

    Castillo, O.: Type-2 fuzzy logic in intelligent control applications. Springer, Heidelberg (2012)

    Google Scholar 

  37. 37.

    D’Andrea, A., Pellegrino, O.: Application of fuzzy techniques for determining the operating speed based on road geometry. PROMET Traffic Transp 24(3), 203–214 (2012)

    Google Scholar 

  38. 38.

    Brcko, T., Svetak, J.: Fuzzy Reasoning as a Base for collision avoidance decision support system. PROMET Traffic Transp 25, 555–564 (2013)

    Google Scholar 

  39. 39.

    Castillo, O.: Interval type-2 fuzzy logic for hybrid intelligent control. Studies in fuzziness and soft computing 298, 91–94 (2013)

    Article  Google Scholar 

  40. 40.

    Kwon, K.-S., Ready, S.: Practical guide to machine vision software: an introduction with LabVIEW. Wiley, Hoboken (2014)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mahmut Dirik.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dirik, M., Kocamaz, A.F. & Castillo, O. Global Path Planning and Path-Following for Wheeled Mobile Robot Using a Novel Control Structure Based on a Vision Sensor. Int. J. Fuzzy Syst. (2020). https://doi.org/10.1007/s40815-020-00888-9

Download citation

Keywords

  • Path planning
  • Visual servoing
  • Soft computing
  • Image processing
  • Collision-free