Coordinated Control of Dual-Motor Using the Interval Type-2 Fuzzy Logic in Autonomous Steering System of AGV

Abstract

To achieve better trajectory tracking of the autonomous ground vehicle (AGV), a dual-motor autonomous steering structure and control method are proposed. The model predictive control (MPC) algorithm is utilized to calculate the optimal front wheel angle in real time based on the vehicle information, and dual-motor steering system follows the target angle to achieve trajectory tracking. In this process, to improve the stability of the angle motor, a coordinated steering controller of the angle motor and torque motor is proposed, and the type-2 fuzzy logic is designed based on the target front wheel angle and vehicle speed to optimize coordination coefficient. The front wheel angle step input and double-lane change trajectory tracking conditions are simulated in the carsim and simulink joint simulation platform, the results show that dual-motor steering system has good trajectory tracking ability, compared with no coordinated control, the current and velocity of angle motor are more stable under the coordinated steering control, which greatly reduces the steering load of the angle motor under different working conditions. The final hardware-in-loop test is put forward to verify the effectiveness of the MPC controller and coordinated steering controller.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

References

  1. 1.

    Kodagoda, K.R.S., Wijesoma, W.-S., Teoh, E.-K.: Fuzzy speed and steering control of an AGV. IEEE Trans. Control Syst. Technol. 10(1), 112–120 (2002)

    Article  Google Scholar 

  2. 2.

    Javid, S., Eghtesad, M., Khayatian, A., et al.: Experimental study of dynamic based feedback linearization for trajectory tracking of a four-wheel autonomous ground vehicle. Autonomous Robots. 19(1), 27–40 (2005)

    Article  Google Scholar 

  3. 3.

    Chen, T., Chen, L., Xu, X., et al.: Passive fault-tolerant path following control of autonomous distributed drive electric vehicle considering steering system fault. Mech. Syst. Signal Processing. 123, 298–315 (2019)

    Article  Google Scholar 

  4. 4.

    Wang, T.: Safety reliability analysis of a dual-redundancy steer-by-wire system. China Society of Automobile Engineering. Proceedings of the 19th Asia-Pacific Annual meeting of Automobile Engineering and the 2017 Annual meeting of China Society of Automobile Engineering. China Society of Automotive Engineering: China Society of Automotive Engineering. pp 50–55 (2017)

  5. 5.

    Maalouf, E., Saad, M., Saliah, H., et al.: A higher level path tracking controller for a four-wheel differentially steered mobile robot. Robot Auton. Syst. 54(1), 23–33 (2006)

    Article  Google Scholar 

  6. 6.

    Fang, H., Dou, L., Chen, J., et al.: Robust anti-sliding control of autonomous ground vehicles in presence of lateral disturbances. Control Eng. Practice. 19(5), 468–478 (2011)

    Article  Google Scholar 

  7. 7.

    Rath, J.J., Defoort, M., Karimi, H.R., et al.: Output feedback active suspension control with higher order terminal sliding mode. Industrial Electronics IEEE Trans n. 64(2), 1392–1403 (2017)

    Article  Google Scholar 

  8. 8.

    Hu, C., Jing, H., Wang, R., et al.: Robust H∞ output-feedback control for path following of autonomous ground vehicles. Mech. Syst. Signal Processing. 70(71), 414–427 (2015)

    Google Scholar 

  9. 9.

    Wang, R., Jing, H., Yan, F., et al.: Optimization and finite-frequency H∞ control of active suspensions in in-wheel motor driven electric ground vehicles. J. Franklin Inst. 352(2), 468–484 (2015)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Marino, R., Scalzi, S., Netto, M.: Nested PID steering control for lane keeping in autonomous vehicles. Control Eng. Pract. 19(12), 1459–1467 (2011)

    Article  Google Scholar 

  11. 11.

    Perez, J., Gajate, A., Milanes, V., et al: Design and implementation of a neuro-fuzzy system for longitudinal control of autonomous vehicles. IEEE World Congress on Computational Intelligence WCCI. pp. 1–5 (2010)

  12. 12.

    Gonzalez, D., Perez, J., Milanes, V., et al.: A review of motion planning techniques for automated vehicles. IEEE Trans. Intell. Transp. Syst. 17(4), 1–11 (2015)

    Google Scholar 

  13. 13.

    Qi, W.: Discussion on direct adaptive steering (DAS) system in Infiniti. Automotive Maintenance. 08, 11–13 (2014)

    Google Scholar 

  14. 14.

    Yao, Y.-X., Brian, D.: Control method of dual motor-based steer-by-wire system. SAE-01-1149 (2007)

  15. 15.

    Soobo, P., Hwang, S., Youngho O., et al: Development of the independent-type steer by wire system. SAE-01-1148 (2007)

  16. 16.

    He, L.: Research on double-motor control method for steer-by-wire system based on FlexRay bus. Jilin University, Changchun (2011)

    Google Scholar 

  17. 17.

    Liu, Z.-G.: Research on control strategy of three-motor wire-controlled steering system. Jilin University, Changchun (2016)

    Google Scholar 

  18. 18.

    Liu, H.: Research on control strategy of steer-by-wire system based on double motor structure. Jilin University, Changchun (2017)

    Google Scholar 

  19. 19.

    Chen, D., Li, X., Zhang, Y., Liang, J., Zhang, Z.: Yaw stability control of SBW electric vehicle. Int J Control Automation. 8(8), 285–296 (2015)

    Article  Google Scholar 

  20. 20.

    Hamza, A., Ramdani, M.: Non-PDC interval type-2 fuzzy model predictive microclimate control of a greenhouse. J Control Autom Electr Syst 31, 62–72 (2020)

    Article  Google Scholar 

  21. 21.

    Khan, M.U., Kara, T.: Adaptive control of a two-link flexible manipulator using a Type-2 neural fuzzy system. Arab J Sci Eng. 45(3), 1949–1960 (2020)

    Article  Google Scholar 

  22. 22.

    Mao, W.L., Shiu, D.Y.: Precision trajectory tracking on XY motion stage using robust interval Type-2 fuzzy PI sliding mode control method. Int J Precis Eng Manuf. 18, 1–22 (2020)

    Google Scholar 

  23. 23.

    Wu, Y., Guan, Y., He, S., Xin, M.: An industrial-based framework for distributed control of heterogeneous network systems. IEEE Trans Syst Man Cybern Syst. 99, 1–9 (2018)

    Google Scholar 

  24. 24.

    He, S., Lu, Y., Wu, Y., Li, Y.: Partial-information-based consensus of network systems with time-varying delay via sampled-data control. Signal Processing. 162, 97–105 (2019)

    Article  Google Scholar 

  25. 25.

    Wei, Y., Qiu, J., Shi, P., et al.: A piecewise-markovian lyapunov approach to reliable output feedback control for fuzzy-affine systems with time-delays and actuator faults. Cybern. IEEE Trans. on. 48(9), 2723–2735 (2018)

    Article  Google Scholar 

  26. 26.

    Wei, Y., Qiu, J., Shi, P., et al.: Fixed-order piecewise-affine output feedback controller for fuzzy-affine-model-based nonlinear systems with time-varying delay. IEEE Trans. Circuits Syst. I Regul. Pap. 64(4), 945–958 (2017)

    Article  Google Scholar 

  27. 27.

    Sun, Y.-J.: Research on the tracking control algorithm of the driverless vehicle based on the model predictive control. Beijing University of Technology, Beijing (2015)

    Google Scholar 

  28. 28.

    Shen, W., Jiang, J., Su, X., et al.: Control strategy analysis of the hydraulic hybrid excavator. J. Franklin Inst. 352(2), 541–561 (2015)

    Article  Google Scholar 

  29. 29.

    Liu, T.-T., Tan, Y., Wu, G., et al: Simulation of PMSM vector control system based on Matlab/Simulink. International Conference on Measuring Technology & Mechatronics Automation. IEEE Computer Society (2009)

  30. 30.

    Tursini, M., Parasiliti, F., Zhang, D.: Real-time gain tuning of PI controllers for high-performance PMSM drives. IEEE Trans. Ind. Appl. 38(4), 1018–1026 (2002)

    Article  Google Scholar 

  31. 31.

    Park, W.-Y., Kim, S.-Y., Lee, C.-H., et al.: The effect of ground condition, tire inflation pressure and axle load on steering torque. J. Biosyst. Eng. 29(5), 553 (2004)

    Google Scholar 

  32. 32.

    Zhu, X., Li, W.: Takagi-Sugeno fuzzy model based shaft torque estimation for integrated motor transmission system. ISA Trans. 93, 14–22 (2019)

    Article  Google Scholar 

  33. 33.

    Rout, C., Kumar, R.S., Chakraborty, D., et al.: An EPQ model for deteriorating items with imperfect production, inspection errors, rework and shortages: a type-2 fuzzy approach. OPSEARCH. 56(3), 657–688 (2019)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the Primary Research & Development Plan of Jiangsu Province (Grant No. BE2019010).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Feng Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Su, P., Wang, F. et al. Coordinated Control of Dual-Motor Using the Interval Type-2 Fuzzy Logic in Autonomous Steering System of AGV. Int. J. Fuzzy Syst. (2020). https://doi.org/10.1007/s40815-020-00886-x

Download citation

Keywords

  • Trajectory tracking
  • Model predictive control (MPC)
  • Dual motor
  • Coordinated control
  • Type-2 fuzzy controller Hardware-in-Loop (HiL)