Credibilistic Bimatrix Games with Loss Aversion and Triangular Fuzzy Payoffs

Abstract

Bimatrix games are reconsidered under assumption that players are loss averse and payoffs are fuzzy, where reference points are given exogenously. The impact of loss aversion on bimatrix game is investigated by applying credibility theory. Three solution concepts of credibilistic loss aversion Nash equilibria (i.e., expected loss aversion Nash equilibrium, optimistic loss aversion Nash equilibrium and pessimistic loss aversion Nash equilibrium) and their existence theorems are proposed. The sufficient and necessary conditions are presented to find three equilibria. It is found that three credibilistic loss aversion Nash equilibria are equivalent if confidence level is equal to 0.5. Furthermore, an analysis on credibilistic loss aversion equilibria with respect to loss aversion is performed in a 2 × 2 bimatrix game with triangular fuzzy payoffs. It is found that with a higher probability a more loss-averse player receives a preferred payoff in the mixed strategy Nash equilibrium in some situations, but receives the second highest payoff in other situations. Finally, a case study is shown to illustrate the validity of the bimatrix game with triangular fuzzy payoffs developed in this paper.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    An, J.J., Li, D.F.: A linear programming approach to solve constrained bi-matrix games with intuitionistic fuzzy payoffs. Int. J. Fuzzy Syst. 21(3), 908–915 (2019)

    MathSciNet  Google Scholar 

  2. 2.

    An, J.J., Li, D.F., Nan, J.X.: A mean-area ranking based non-linear programming approach to solve intuitionistic fuzzy bi-matrix games. J. Intell. Fuzzy Syst. 33(1), 563–573 (2017)

    MATH  Google Scholar 

  3. 3.

    Berg, J.: Statistical mechanics of random two-player games. Phys. Rev. E 61(3), 2327 (2000)

    MathSciNet  Google Scholar 

  4. 4.

    Campos, L.: Fuzzy linear programming models to solve fuzzy matrix games. Fuzzy Sets Syst. 32(3), 275–289 (1989)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Cevikel, A.C., Ahlatçıoğlu, M.: Solutions for fuzzy matrix games. Comput. Math. Appl. 60(3), 399–410 (2010)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Chandra, S., Aggarwal, A.: On solving matrix games with pay-offs of triangular fuzzy numbers: certain observations and generalizations. Eur. J. Oper. Res. 246(2), 575–581 (2015)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Chen, Y.W., Larbani, M.: Two-person zero-sum game approach for fuzzy multiple attribute decision making problems. Fuzzy Sets Syst. 157(1), 34–51 (2006)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Cui, C., Feng, Z., Tan, C.: Credibilistic loss aversion nash equilibrium for bimatrix games with triangular fuzzy payoffs. Complexity 2018, 1–16 (2018)

    MATH  Google Scholar 

  9. 9.

    Cui, C., Feng, Z., Tan, C., Borkotokey, S.: Loss aversion equilibrium of bimatrix games with symmetric triangular fuzzy payoffs. Int. J. Fuzzy Syst. 21(3), 892–907 (2019)

    MathSciNet  Google Scholar 

  10. 10.

    Driesen, B., Perea, A., Peters, H.: On loss aversion in bimatrix games. Theory Decis. 68(4), 367–391 (2010)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Driesen, B., Perea, A., Peters, H.: The Kalai–Smorodinsky bargaining solution with loss aversion. Math. Soc. Sci. 61(1), 58–64 (2011)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Driesen, B., Perea, A., Peters, H.: Alternating offers bargaining with loss aversion. Math. Soc. Sci. 64(2), 103–118 (2012)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Ein-Dor, L., Kanter, I.: Matrix games with nonuniform payoff distributions. Physica A 302(1), 80–88 (2001)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Feng, Z., Tan, C.: Subgame perfect equilibrium in the rubinstein bargaining game with loss aversion. Complexity 2019, 1–23 (2019)

    MATH  Google Scholar 

  15. 15.

    Fishburn, P.C., Kochenberger, G.A.: Two-piece von Neumann–Morgenstern utility functions. Decis. Sci. 10(4), 503–518 (1979)

    Google Scholar 

  16. 16.

    Gani, A.N., Assarudeen, S.N.M.: A new operation on triangular fuzzy number for solving fuzzy linear programming problem. Appl. Math. Sci. 6(12), 525–532 (2012)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Gao, J.: Credibilistic game with fuzzy information. J. Uncertain Syst. 1(1), 74–80 (2007)

    Google Scholar 

  18. 18.

    Gao, J., Liu, Z.Q., Shen, P.: On characterization of credibilistic equilibria of fuzzy-payoff two-player zero-sum game. Soft Comput. 13(2), 127–132 (2009)

    MATH  Google Scholar 

  19. 19.

    Gao, J., Yu, Y.: Credibilistic extensive game with fuzzy information. Soft Comput. 17, 557–567 (2012)

    MATH  Google Scholar 

  20. 20.

    Gao, J., Yang, X.: Credibilistic bimatrix game with asymmetric information: Bayesian optimistic equilibrium strategy. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 21(supp01), 89–100 (2013)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Jana, J., Roy, S.K.: Dual hesitant fuzzy matrix games: based on new similarity measure. Soft Comput. 23(18), 8873–8886 (2019)

    MATH  Google Scholar 

  22. 22.

    Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk. Econometrica 47, 263–291 (1979)

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Koca, Y., Testik, O.M.: Solving two-player zero sum games with fuzzy payoffs when players have different risk attitudes. Qual. Reliability Eng. Int. 34(7), 1461–1474 (2018)

    Google Scholar 

  24. 24.

    Kramer, R.M.: Windows of vulnerability or cognitive illusions? Cognitive processes and the nuclear arms race. J. Exp. Soc. Psychol. 25(1), 79–100 (1989)

    Google Scholar 

  25. 25.

    Kumar, S., Chopra, R., Saxena, R.R.: A fast approach to solve matrix games with payoffs of trapezoidal fuzzy numbers. Asia-Pac. J. Oper. Res. 33(06), 1–14 (2016)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Larbani, M.: Solving bimatrix games with fuzzy payoffs by introducing nature as a third player. Fuzzy Sets Syst. 160(5), 657–666 (2009)

    MathSciNet  MATH  Google Scholar 

  27. 27.

    Li, C.L., Zhang, Q.: Nash equilibrium strategy for fuzzy non-cooperative games. Fuzzy Sets Syst. 176(1), 46–55 (2011)

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Li, D.F.: Linear programming approach to solve interval-valued matrix games. Omega 39(6), 655–666 (2011)

    Google Scholar 

  29. 29.

    Li, D.F.: A fast approach to compute fuzzy values of matrix games with triangular fuzzy payoffs. Eur. J. Oper. Res. 223(2), 421–429 (2012)

    MATH  Google Scholar 

  30. 30.

    Liu, B.: Theory and practice of uncertain programming. Physica-Verlag, Heidelberg (2002)

    Google Scholar 

  31. 31.

    Liu, B.: Uncertainty theory, 2nd edn. Springer, Berlin (2007)

    Google Scholar 

  32. 32.

    Liu, B., Liu, Y.: Expected value of fuzzy variable and fuzzy expected value models. IEEE Trans. Fuzzy Syst. 10, 445–450 (2002)

    Google Scholar 

  33. 33.

    Liu, Y., Liu, B.: Expected value operator of random fuzzy variable and random fuzzy expected value models. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 11(2), 195–215 (2003)

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Liu, B., Liu, B.: Theory and practice of uncertain programming. Springer, Berlin (2007)

    Google Scholar 

  35. 35.

    Maeda, T.: Characterization of the equilibrium strategy of the bimatrix game with fuzzy payoff. J. Math. Anal. Appl. 251(2), 885–896 (2000)

    MathSciNet  MATH  Google Scholar 

  36. 36.

    Maeda, T.: On characterization of equilibrium strategy of two-person zero-sum games with fuzzy payoffs. Fuzzy Sets Syst. 139(2), 283–296 (2003)

    MathSciNet  MATH  Google Scholar 

  37. 37.

    Nan, J.X., Zhang, M.J., Li, D.F.: A methodology for matrix games with payoffs of triangular intuitionistic fuzzy number. J. Intell. Fuzzy Syst. 26(6), 2899–2912 (2014)

    MathSciNet  MATH  Google Scholar 

  38. 38.

    Nash, J.: Equilibrium points in n-person games. Proc. Nat. Acad. Sci. 36, 48–49 (1950)

    MathSciNet  MATH  Google Scholar 

  39. 39.

    Negoita, C., Zadeh, L., Zimmermann, H.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1(3–28), 61–72 (1978)

    MathSciNet  Google Scholar 

  40. 40.

    Roberts, D.P.: Nash equilibria of Cauchy-random zero-sum and coordination matrix games. Int. J. Game Theory 34(2), 167–184 (2006)

    MathSciNet  MATH  Google Scholar 

  41. 41.

    Shalev, J.: Loss aversion equilibrium. Int. J. Game Theory 29(2), 269–287 (2000)

    MathSciNet  MATH  Google Scholar 

  42. 42.

    Shalev, J.: Loss aversion and bargaining. Theory Decis. 52, 201–232 (2002)

    MathSciNet  MATH  Google Scholar 

  43. 43.

    Sharif, M., Kerachian, R.: Conflict resolution in construction projects using nonzero-sum fuzzy bimatrix games. Iran. J. Sci. Technol. Trans. Civ. Eng. 42(4), 371–379 (2018)

    Google Scholar 

  44. 44.

    Shen, P., Gao, J.: Coalitional game with fuzzy payoffs and credibilistic core. Soft Comput. 15(4), 781–786 (2010)

    MATH  Google Scholar 

  45. 45.

    Tan, C., Feng, Z., Li, C., Yi, W.: Optimal Bayesian equilibrium for n-person credibilistic non-cooperative game with risk aversion. J. Intell. Fuzzy Syst. 33(2), 741–751 (2017)

    MATH  Google Scholar 

  46. 46.

    Taylor, S.E.: Asymmetrical effects of positive and negative events: the mobilization–minimization hypothesis. Psychol. Bull. 110(1), 67 (1991)

    Google Scholar 

  47. 47.

    Tversky, A., Kahneman, D.: Advances in prospect theory: cumulative representation of uncertainty. J. Risk Uncertain. 5, 297–323 (1992)

    MATH  Google Scholar 

  48. 48.

    Wu, H.C.: Cores and dominance cores of cooperative games endowed with fuzzy payoffs. Fuzzy Optim. Decis. Mak. 18(2), 219–257 (2019)

    MathSciNet  MATH  Google Scholar 

  49. 49.

    Verma, T., Kumar, A.: Ambika methods for solving matrix games with Atanassov’s intuitionistic fuzzy payoffs. IEEE Trans. Fuzzy Syst. 26(1), 270–283 (2017)

    Google Scholar 

  50. 50.

    Vijay, V., Chandra, S., Bector, C.R.: Matrix games with fuzzy goals and fuzzy payoffs. Omega 33(5), 425–429 (2005)

    Google Scholar 

  51. 51.

    Xia, M.: Methods for solving matrix games with cross-evaluated payoffs. Soft Comput. 23(21), 11123–11140 (2019)

    Google Scholar 

  52. 52.

    Xu, C., Meng, F., Zhang, Q.: PN equilibrium strategy for matrix games with fuzzy payoffs. J. Intell. Fuzzy Syst. 32(3), 2195–2206 (2017)

    MATH  Google Scholar 

  53. 53.

    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (Nos. 71671188, 71971218) and Natural Science Foundation of Hunan Province, China (No. 2016JJ1024).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chunqiao Tan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, Z., Tan, C. Credibilistic Bimatrix Games with Loss Aversion and Triangular Fuzzy Payoffs. Int. J. Fuzzy Syst. 22, 1635–1652 (2020). https://doi.org/10.1007/s40815-020-00850-9

Download citation

Keywords

  • Loss aversion
  • Credibility theory
  • Credibilistic loss aversion Nash equilibrium
  • Triangular fuzzy payoffs