The Medical Treatment Service Matching Based on the Probabilistic Linguistic Term Sets with Unknown Attribute Weights

Abstract

In multi-attribute two-sided matching (MATSM) problems, the attribute weights play an important role. The existing methods usually neglect the interaction and the effect among multiple attributes, resulting in irrational matching results. This paper takes this interaction into consideration. With the complexity of the matching environment, the uncertainties of agents should be considered. The probabilistic linguistic term set (PLTS) is a useful tool to describe the uncertainty and the limited cognition of agents. Thus, this paper aims to provide a novel MATSM method under the probabilistic linguistic environment with unknown attribute weights. Firstly, the attribute weights are determined by providing the probabilistic linguistic decision-making trial and evaluation laboratory (PL-DEMATEL) method. Besides, this paper constructs the gain and loss (GL) matrices and calculates the agents’ perceived values (PVs) by introducing prospect theory (PT). Then, the PVs are aggregated into the comprehensive PVs (CPVs) based on the obtained attribute weights. Next, this paper also proposes a ranking method, called probabilistic linguistic multi-attribute border approximation area comparison (PL-MABAC) method, to rank the multiple agents, which lay a solid foundation for stable matching constraint of the programming model. The matching results are obtained by solving the programming model. Finally, a case study of matching medical treatment service providers and demanders is presented to validate the proposed method. The comparative analyses and discussions are also provided to demonstrate its effectiveness.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Jiang, Z.Z., Ip, W.H., Lau, H.C.W., Fan, Z.P.: Multi-objective optimization matching for one-shot multi-attribute exchanges with quantity discounts in E-brokerage. Expert Syst. Appl. 38(4), 4169–4180 (2011)

    Google Scholar 

  2. 2.

    Chen, X., Zhao, L., Liang, H., Lai, K.K.: Matching patients and healthcare service providers: a novel two-stage method based on knowledge rules and OWA-NSGA-II algorithm. J. Comb. Optim. 37, 221–247 (2017)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Sørensen, M.: How smart is smart money? A two-sided matching model of venture capital. J. Financ. 62(6), 2725–2762 (2007)

    Google Scholar 

  4. 4.

    Azevedo, E.M.: Imperfect competition in two-sided matching markets. Game Econ. Behav. 83(1), 207–223 (2014)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Wang, M., Li, H.: A research on two-sided matching algorithm between new hired knowledge staff and position requirements. In: 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce, IEEE 55–58 (2011)

  6. 6.

    Korkmaz, İ., Gökçen, H., Çetinyokuş, T.: An analytic hierarchy process and two-sided matching based decision support system for military personnel assignment. Inform. Sci. 178(14), 2915–2927 (2008)

    Google Scholar 

  7. 7.

    Jorswieck, E. A.: Stable matchings for resource allocation in wireless networks. In: 2011 17th International Conference on Digital Signal Processing, IEEE 1–8 (2011)

  8. 8.

    Chen, X., Li, Z., Fan, Z.P., Zhou, X., Zhang, X.: Matching demanders and providers in knowledge service: a method based on fuzzy axiomatic design. Inform. Sci. 346, 130–145 (2016)

    MathSciNet  Google Scholar 

  9. 9.

    Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Mon. 69(1), 9–15 (1962)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Roth, A.E.: Common and conflicting interests in two-sided matching markets. Eur. Econ. Rev. 27(1), 75–96 (1985)

    MathSciNet  Google Scholar 

  11. 11.

    Sim, K.M., Chan, R.: A brokering protocol for agent-based e-commerce. IEEE T. Syst. Man Cy. C 30(4), 474–484 (2000)

    Google Scholar 

  12. 12.

    Wang, J.J., Yang, D.L.: Using a hybrid multi-criteria decision aid method for information systems outsourcing. Comput. Oper. Res. 34(12), 3691–3700 (2007)

    MATH  Google Scholar 

  13. 13.

    Bell, D.E.: Disappointment in decision making under uncertainty. Oper. Res. 33(1), 1–27 (1985)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Suh, N.P.: Axiomatic design: advances and applications. Oxford University Press, Oxford (2001)

    Google Scholar 

  15. 15.

    Suh, N.P.: The principles of design. Oxford University Press, New York (1990)

    Google Scholar 

  16. 16.

    Bell, D.E.: Regret in decision making under uncertainty. Oper. Res. 30(5), 961–981 (1982)

    MATH  Google Scholar 

  17. 17.

    Loomes, G., Sugden, R.: Regret theory: an alternative theory of rational choice under uncertainty. Econ. J. 92(368), 805–824 (1982)

    Google Scholar 

  18. 18.

    Kahneaman, D., Tversky, A.: Prospect theory: an analysis of decision making under risk. Econometrica 47(3), 63–91 (1979)

    Google Scholar 

  19. 19.

    Tversky, A., Kahneman, D.: Advances in prospect theory: cumulative representation of uncertainty. J. Risk Uncertainty 5(4), 297–323 (1992)

    MATH  Google Scholar 

  20. 20.

    Fan, Z.P., Li, M.Y., Zhang, X.: Satisfied two-sided matching: a method considering elation and disappointment of agents. Soft. Comput. 22(21), 7227–7241 (2018)

    MATH  Google Scholar 

  21. 21.

    Chen, Y., Li, B.: Dynamic multi-attribute decision making model based on triangular intuitionistic fuzzy numbers. Sci. Iran. 18(2), 268–274 (2011)

    MATH  Google Scholar 

  22. 22.

    Dağdeviren, M., Yavuz, S., Kılınç, N.: Weapon selection using the AHP and TOPSIS methods under fuzzy environment. Expert Syst. Appl. 36(4), 8143–8151 (2009)

    Google Scholar 

  23. 23.

    Pang, Q., Wang, H., Xu, Z.S.: Probabilistic linguistic term sets in multi-attribute group decision making. Inform. Sciences 369, 128–143 (2016)

    Google Scholar 

  24. 24.

    Xie, W.Y., Xu, Z.S., Ren, Z.L., Wang, H.: Probabilistic linguistic analytic hierarchy process and its application on the performance assessment of Xiongan new area. Int. J. Inf. Tech. Decis. 17(06), 1693–1724 (2018)

    Google Scholar 

  25. 25.

    Zhang, X., Xing, X.: Probabilistic linguistic VIKOR method to evaluate green supply chain initiatives. Sustain. 9(7), 1231 (2017)

    Google Scholar 

  26. 26.

    Zhang, Y.X., Xu, Z.S., Liao, H.C.: Water security evaluation based on the TODIM method with probabilistic linguistic term sets. Soft Comput. 23(15), 6215–6230 (2018)

    Google Scholar 

  27. 27.

    Li, B., Zhang, Y.X., Xu, Z.S.: The aviation technology two-sided matching with the expected time based on the probabilistic linguistic preference relations. J. Oper. Res. Soc. China. (2019). https://doi.org/10.1007/s40305-019-00274-9

    Article  MATH  Google Scholar 

  28. 28.

    Saaty, T.L.: Analytic network process. Springer, New York (2013)

    Google Scholar 

  29. 29.

    Yue, Q., Peng, Y., Yu, B., Hong, Y., Xiao, Q.: Two-sided matching decision under multi-granularity uncertain linguistic environment. Int. J. U E Serv. Sci. Technol. 8(11), 35–44 (2015)

    Google Scholar 

  30. 30.

    Yue, Q.: Two-sided matching decision with two-granularity uncertain and incomplete linguistic terms. Int. J. Multim. Ubiq. Eng. 10(2), 121–128 (2015)

    Google Scholar 

  31. 31.

    Tian, X.L., Xu, Z.S., Fujita, H.: Sequential funding the venture project or not? A prospect consensus process with probabilistic hesitant fuzzy preference information. Knowl.-Based Syst. 161, 172–184 (2018)

    Google Scholar 

  32. 32.

    Tian, X.L., Xu, Z.S., Gu, J., Herrera-Viedma, E.: How to select a promising enterprise for venture capitalists with prospect theory under intuitionistic fuzzy circumstance? Appl. Soft. Comput. 67, 756–763 (2018)

    Google Scholar 

  33. 33.

    Gabus, A., Fontela, E.: World problems, an invitation to further thought within the framework of DEMATEL. Battelle-Geneva R&D Center, Switzerland 1-8 (1972)

  34. 34.

    Tsai, W.H., Chou, W.C.: Selecting management systems for sustainable development in SMEs: a novel hybrid model based on DEMATEL, ANP, and ZOGP. Expert Syst. Appl. 36(2), 1444–1458 (2009)

    Google Scholar 

  35. 35.

    Tzeng, G.H., Chiang, C.H., Li, C.W.: Evaluating intertwined effects in e-learning programs: a novel hybrid MCDM model based on factor analysis and DEMATEL. Expert Syst. Appl. 32(4), 1028–1044 (2007)

    Google Scholar 

  36. 36.

    Shieh, J.I., Wu, H.H., Huang, K.K.: A DEMATEL method in identifying key success factors of hospital service quality. Knowl.-Based Syst. 23(3), 277–282 (2010)

    Google Scholar 

  37. 37.

    Hsu, C.Y., Chen, K.T., Tzeng, G.H.: FMCDM with fuzzy DEMATEL approach for customers’ choice behavior model. Int. J. Fuzzy Syst. 9(4), 236–246 (2007)

    MathSciNet  Google Scholar 

  38. 38.

    Lin, C.J., Wu, W.W.: A causal analytical method for group decision-making under fuzzy environment. Expert Syst. Appl. 34(1), 205–213 (2008)

    MathSciNet  Google Scholar 

  39. 39.

    Dalalah, D., Hayajneh, M., Batieha, F.: A fuzzy multi-criteria decision making model for provider selection. Expert Syst. Appl. 38(7), 8384–8391 (2011)

    Google Scholar 

  40. 40.

    Chang, B., Chang, C.W., Wu, C.H.: Fuzzy DEMATEL method for developing provider selection criteria. Expert Syst. Appl. 38(3), 1850–1858 (2011)

    Google Scholar 

  41. 41.

    Govindan, K., Khodaverdi, R., Vafadarnikjoo, A.: Intuitionistic fuzzy based DEMATEL method for developing green practices and performances in a green supply chain. Expert Syst. Appl. 42(20), 7207–7220 (2015)

    Google Scholar 

  42. 42.

    Pamučar, D., Ćirović, G.: The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation Area Comparison (MABAC). Expert Syst. Appl. 42(6), 3016–3028 (2015)

    Google Scholar 

  43. 43.

    Xue, Y.X., You, J.X., Lai, X.D., Liu, H.C.: An interval-valued intuitionistic fuzzy MABAC approach for material selection with incomplete weight information. Appl. Soft. Comput. 38, 703–713 (2016)

    Google Scholar 

  44. 44.

    Yu, S.M., Wang, J., Wang, J.Q.: An interval type-2 fuzzy likelihood-based MABAC approach and its application in selecting hotels on a tourism website. Int. J. Fuzzy Syst. 19(1), 47–61 (2017)

    MathSciNet  Google Scholar 

  45. 45.

    Peng, X., Yang, Y.: Pythagorean fuzzy Choquet integral based MABAC method for multiple attribute group decision making. Int. J. Intell. Syst. 31(10), 989–1020 (2016)

    MathSciNet  Google Scholar 

  46. 46.

    Wu, X.L., Liao, H.C., Xu, Z.S., Hafezalkotob, A., Herrera, F.: Probabilistic Linguistic MULTIMOORA: a multicriteria decision making method based on the probabilistic linguistic expectation function and the improved Borda rule. IEEE T. Fuzzy Syst. 26(6), 3688–3702 (2018)

    Google Scholar 

  47. 47.

    Goodman, R.: Introduction to stochastic models. Courier Corporation (2006)

  48. 48.

    Papoulis, A., Pillai, S.U.: Probability, random variables, and stochastic processes. Tata McGraw-Hill Education, New York (2002)

    Google Scholar 

  49. 49.

    Xu, Z.S.: Linguistic decision making: theory and methods. Springer-Verlag, Berlin (2012)

    Google Scholar 

  50. 50.

    Yoon, K.P., Hwang, C.L.: Multiple attribute decision making: an introduction. Sage publications, Thousand Oaks (1995)

    Google Scholar 

  51. 51.

    Abdellaoui, M.: Parameter-free elicitation of utility and probability weighting functions. Manage. Sci. 46(11), 1497–1512 (2000)

    MATH  Google Scholar 

  52. 52.

    Deng, W., Xu, J., Zhao, H.: An improved ant colony optimization algorithm based on hybrid strategies for scheduling problem. IEEE Access 7, 20281–20292 (2019)

    Google Scholar 

  53. 53.

    Deng, W., Zhao, H., Yang, X., Xiong, J., Sun, M., Li, B.: Study on an improved adaptive PSO algorithm for solving multi-objective gate assignment. Appl. Soft. Comput. 59, 288–302 (2017)

    Google Scholar 

  54. 54.

    Gonzalez, R., Wu, G.: On the shape of the probability weighting function. Cognitive Psychol. 38(1), 129–166 (1999)

    Google Scholar 

  55. 55.

    Tversky, A., Fox, C.R.: Weighing risk and uncertainty. Psychol. Rev. 102(2), 269–283 (1995)

    Google Scholar 

  56. 56.

    Zhang, Y.X., Xu, Z.S., Liao, H.C.: A consensus process for group decision making with probabilistic linguistic preference relations. Inform. Sci. 414, 260–275 (2017)

    Google Scholar 

  57. 57.

    Liao, H.C., Xu, Z.S., Zeng, X.J.: Distance and similarity measures for hesitant fuzzy linguistic term sets and their application in multi-criteria decision making. Inform. Sci. 271, 125–142 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (Nos. 71771155, 71571123), the scholarship under the UK–China Joint Research and Innovation Partnership Fund Ph.D. Placement Programme (CSC No. 201806240416) and the Teacher–Student Joint Innovation Research Fund of Business School of Sichuan University (No. H2018016).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zeshui Xu.

Appendix

Appendix

See Tables 11, 12, 13, 14, 15, 16, 17 and 18.

Table 11 The \(N_{i}\)
Table 12 The expectation provided by \(A_{i}\) for \(C_{{}}^{A}\)
Table 13 The evaluation of \(B_{j}\) for \(C_{{}}^{A}\)
Table 14 The expectation provided by \(B_{j}\) for \(C_{{}}^{B}\)
Table 15 The evaluation of \(A_{i}\) for \(C_{{}}^{B}\)
Table 16 The influence degree for \(C^{A}\) provided by \(A_{i}\)
Table 17 The influence degree for \(C^{B}\) provided by \(B_{j}\)
Table 18 The weight values

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, B., Zhang, Y. & Xu, Z. The Medical Treatment Service Matching Based on the Probabilistic Linguistic Term Sets with Unknown Attribute Weights. Int. J. Fuzzy Syst. 22, 1487–1505 (2020). https://doi.org/10.1007/s40815-020-00844-7

Download citation

Keywords

  • Multiple-attribute two-sided matching
  • Probabilistic linguistic term sets
  • Decision-making trial and evaluation laboratory
  • Prospect theory
  • Multi-attributive border approximation area comparison