Skip to main content

Advertisement

Log in

Anthropogenic influence on global warming for effective cost-benefit analysis: a machine learning perspective

  • Published:
Economia e Politica Industriale Aims and scope Submit manuscript

Abstract

In the climate domain, attribution is the process of determining the external forcings which are more likely to be responsible of the climate change which, in turn, affects global economic growth. These factors influence the climatic system by altering its properties including, for instance, the radiative balance. In this context, investigating the role of anthropogenic forcings toward natural factors in the global warming of the last decades is of paramount importance. Global climate models (GCMs) applied to attribution studies showed that the temperature increase in the second half of the twentieth century can be mainly imputable to the emissions of anthropogenic greenhouse gases. In this study we resort to a data-driven approach based on machine learning with the aim of analyzing the relationship between global temperature anomalies and natural and anthropogenic forcings. Our empirical findings fully agree with the results of GCMs attribution studies, and further shed light on the natural and anthropogenic drivers that, on a multivariate basis, exert the major influence on the global temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Attanasio, A., Pasini, A., & Triacca, U. (2013). Granger causality analyses for climatic attribution. Atmospheric and Climate Sciences, 3, 515–522.

    Article  Google Scholar 

  • Bindoff, N.L., Stott, P. A., AchutaRao, K. M., Allen, M. R., Gillett, N., Gutzler, D., et al. (2013). Detection and attribution of climate change: From global to regional. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 867–952.

  • Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1997). Classification and Regression Trees. Oxford: Taylor & Francis.

    Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

    Article  Google Scholar 

  • Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B., & Jones, P. D. (2006). Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850. Journal of Geophysical Research, 111, D12106. https://doi.org/10.1029/2005JD006548.

    Article  Google Scholar 

  • Brokamp, C., Jandarov, R., Rao, M. B., LeMasters, G., & Ryan, P. (2017). Exposure assessment models for elemental components of particulate matter in an urban environment: A comparison of regression and random forest approaches. Atmospheric Environment, 151, 1–11.

    Article  Google Scholar 

  • Burke, M., Hsiang, S. M., & Miguel, E. (2015). Global non-linear effect of temperature on economic production. Nature, 527, 235–239.

    Article  Google Scholar 

  • Carleton, T. A., & Hsiang, S. M. (2016). Social and economic impacts of climate. Science, 353, aad9837.

    Article  Google Scholar 

  • Carslaw, K. S. (2009). Cosmic rays, clouds and climate. Nature, 460, 332–333.

    Article  Google Scholar 

  • Chrysafis, I., Mallinis, G., Gitas, I., & Tsakiri-Strati, M. (2017). Estimating Mediterranean forest parameters using multi seasonal Landsat 8 OLI imagery and an ensemble learning method. Remote Sensing of Environment, 199, 154–166.

    Article  Google Scholar 

  • Chylek, P., Klett, J. D., Lesins, G., Dubey, M. K., & Hengartner, N. (2014). The Atlantic Multidecadal Oscillation as a dominant factor of oceanic influence on climate. Geophysical Research Letters, 41, 1689–697.

    Article  Google Scholar 

  • de Almeida, B. A., & Mostafavi, A. (2016). Resilience of infrastructure systems to sea-level rise in coastal areas: impacts, adaptation measures, and implementation challenges. Sustainability, 8, 1–28.

    Google Scholar 

  • Dell, M., Jones, B. F., & Olken, B. A. (2009). Temperature and income: Reconciling new cross-sectional and panel estimates. American Economic Review: Papers and Proceedings, 99, 198–204.

    Article  Google Scholar 

  • Easterbrook, D. J. (2016). Using patterns of recurring climate cycles to predict future climate changes. In Evidence-Based Climate Science, Second Edition, pp 395–411.

    Chapter  Google Scholar 

  • Hegerl, G. C., & Zwiers, F. W. (2011). Use of models in detection and attribution of climate change. Climate Change, 2, 570–591.

    Google Scholar 

  • Hill, T., Marquez, L., O’Connor, M., & Remus, W. (1994). Artificial neural network models for forecasting and decision making. International Journal of Forecasting, 10, 5–15.

    Article  Google Scholar 

  • Hsiang, S., Kopp, R., Jina, A., Rising, J., Delgado, M., Mohan, S., et al. (2017). Estimating economic damage from climate change in the United States. Science, 365, 1362–1369.

    Article  Google Scholar 

  • Kampichler, C., & Sierdsema, H. (2017). On the usefulness of prediction intervals for local species distribution model forecasts. Ecological Informatics, (In press). https://doi.org/10.1016/j.ecoinf.2017.07.003.

    Article  Google Scholar 

  • Kang, Y., Khan, S., & Khan, X. (2009). Climate change impacts on crop yield, crop water productivity and food security—A review. Progress in Natural Science, 19, 1665–1674.

    Article  Google Scholar 

  • Korhonen, K. T., & Kangas, A. (1997). Application of nearest neighbour regression for generalizing sample tree information. Scandinavian Journal of Forest Research, 12, 97–101.

    Article  Google Scholar 

  • Heal, G., & Park, J. (2016). Temperature stress and the direct impact of climate change: A review of an emerging literature. Review of Environmental Economics and Policy, 10, 347–362.

    Article  Google Scholar 

  • Landrigan, P. J., Fuller, R., Acosta, N. J. R., Adeyi, O., Arnold, R., & Basu, N., et al. (2017). The Lancet Commission on pollution and health. The Lancet, (In press). https://doi.org/10.1016/S0140-6736(17)32345-0.

    Article  Google Scholar 

  • Mitchell, T. (1997). Machine Learning. New York: McGraw-Hill.

    Google Scholar 

  • Pachauri, R. K., & Reisinger, A. (eds.) (2007). Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. Geneva, Switzerland: IPCC.

    Google Scholar 

  • Pasini, A., Lor, M., & Ameli, F. (2006). Neural network modelling for the analysis of forcings/temperatures relationships at different scales in the climate system. Ecological Modelling, 191, 58–67.

    Article  Google Scholar 

  • Pasini, A., Triacca, U., & Attansaio, A. (2015). On the role of sulfates in recent global warming: A Granger causality analysis. International Journal of Climatology, 35, 3701–3706.

    Article  Google Scholar 

  • Power, S. B., & Kociuba, G. (2011). The impact of global warming on the Southern Oscillation Index. Climate Dynamics, 37, 1745–1754.

    Article  Google Scholar 

  • Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81–106.

    Google Scholar 

  • Schneider, N., & Cornuelle, B. D. (2005). The forcing of the pacific decadal oscillation. Journal of Climate, 18, 4355–4373.

    Article  Google Scholar 

  • Sloan, T., & Wolfendale, A. W. (2013a). Cosmic rays, solar activity and the climate. Environmental Research Letters, 8, 1–7.

    Article  Google Scholar 

  • Sloan, T., & Wolfendale, A. W. (2013b). Cosmic rays and climate change over the past 1000 million years. New Astronomy, 25, 45–49.

    Article  Google Scholar 

  • Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14, 199–222.

    Article  Google Scholar 

  • Sokolik, I. N., & Toon, O. B. (1996). Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature, 381, 681–683.

    Article  Google Scholar 

  • Soon, W., Connolly, R., & Connolly, M. (2015). Re-evaluating the role of solar variability on Northern Hemisphere temperature trends since the 19th century. Earth-Science Reviews, 150, 409–452.

    Article  Google Scholar 

  • Stern, N. (2007). The Economics of Climate Change: The Stern Review. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Svensmark, H. (2000). Cosmic rays and earth’s climate. Space Science Review, 93, 155–166.

    Article  Google Scholar 

  • Tashman, L. J. (2000). Out-of-sample tests of forecasting accuracy: An analysis and review. International Journal of Forecasting, 16, 437–450.

    Article  Google Scholar 

  • Triacca, U., Attanasio, A., & Pasini, A. (2013). Anthropogenic global warming hypothesis: Testing its robustness by Granger causality analysis. Environmetrics, 24, 260–268.

    Article  Google Scholar 

  • Waldhoff, S. T., Anthoff, S., Rose, S., & Tol, S. (2011). The marginal damage costs of different greenhouse gases: An application of FUND. Economics, 8, 1–33.

    Google Scholar 

  • Weyant, J. (2017). Some contributions of integrated assessment models of global climate change. Review of Environmental Economics and Policy, 11, 115–137.

    Article  Google Scholar 

  • Zhao, S., & Li, Y. (2013). A retrieval algorithm of fast aerosol optical thickness based on hyperion data. In Proceedings of the 2nd International Conference on Measurement, Information and Control, pp. 9–11.

Download references

Acknowledgements

We thank Prof. Antonello Pasini for providing us with the dataset and for the fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Orsenigo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orsenigo, C., Vercellis, C. Anthropogenic influence on global warming for effective cost-benefit analysis: a machine learning perspective. Econ Polit Ind 45, 425–442 (2018). https://doi.org/10.1007/s40812-018-0092-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40812-018-0092-2

Keywords

JEL Classification

Navigation