Evaluating the dynamics and eco-climatic predictors of forest conversion and restoration in Old Oyo National Park, Nigeria using geospatial and machine learning techniques

Abstract

Forest fragmentation and restoration in protected areas over a period provide insights into the success of any ecological intervention. This study aimed to determine the landscape pattern, dynamics, intensity, and eco-climatic drivers of forest fragmentation and restoration within the last 4 decades in Old Oyo National Park (OONP), Nigeria. The data collection and analysis used field observations, and geospatial and machine learning techniques. Three-time series (1986, 2003, and 2019) of Landsat satellite imageries downloaded and subjected to supervised image classification and landscape analysis (LA). The results revealed that the mixed open savanna areas covered the highest landmass of OONP. The dense woodland and forest outlier areas (DWFOA) reduced from 579.34 km2 (23.07%) in 1986 to 489.84 km2 (19.50%) in 2003 and increased to 653.46 km2 (26.02%) in 2019. LA revealed an increase in the forest fragmentation based on the number of patches and mean patch area. Twenty-six and twenty-eight out of forty-three eco-climatic variables are the most significant drivers to the changed and restored DWFOA between the year 1986 and 2019. Partial dependence plots showed a strong relationship of bush burn severity on the probability of the conversion and restoration of DWFOA. Other significant variables include distance to host communities, distance to roads, distance to rivers, elevation, average monthly rainfall (March–April, June–October), and slope. Despite the forest restoration, the evidence of forest fragmentation calls for measures to mitigate the climate change, indiscriminate bush burning and other anthropogenic pressure indicators.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abreu RCR, Hoffmann WA, Vasconcelos HL, Pilon NA, Rossatto DR, Durigan G (2017) The biodiversity cost of carbon sequestration in tropical savanna. Sci Adv 3:e1701284

    Article  Google Scholar 

  2. Ademiluyi IA, Okude AS, Akanni C (2008) An appraisal of land use and land cover mapping in Nigeria. Afr J Agric Res 3(9):581–586

    Google Scholar 

  3. Adenle AA, Eckert S, Speranza CI, Adedeji OI, Ellison D (2020) Human-induced land degradation dominance in the Nigerian Guinea savannah between 2003–2018, remote sensing applications: society and environment.https://doi.org/10.1016/j.rsase.2020.100360

  4. Adetoro AO, Oyeleye DO, Ijeomah HM (2011) Causes and impacts of conflict on biodiversity management at the Buffer Zone of Old Oyo National Park. Africa research review. Int Multi-Discip J 5(1):485–495

    Google Scholar 

  5. Akın A, Erdogan MA (2020) Analysing temporal and spatial urban sprawl change of Bursa city using landscape metrics and remote sensing. Model Earth Syst Environ 6:1331–1343. https://doi.org/10.1007/s40808-020-00766-1

    Article  Google Scholar 

  6. Alarape A (2002) Culture and Conservation in and around Old Oyo National Park. Unpublished PhD Thesis Submitted to the Department of Wildlife and Fisheries, University of Ibadan

  7. Andam KS, Ferraro PJ, Hanauer MM (2013) The effects of protected area systems on ecosystem restoration: a quasi-experimental design to estimate the impact of Costa Rica’s protected area system on forest regrowth. Conserv Lett. https://doi.org/10.1111/conl.12004

    Article  Google Scholar 

  8. Anfuso G, Williams AT, Martínez GC, Botero CM, Hernández JC, Pranzini E (2017) Evaluation of the scenic value of 100 beaches in Cuba: implications for coastal tourism management. Ocean Coast Manag 142:173–185

    Article  Google Scholar 

  9. Antrop M (2005) Handling landscape change. In: “Landscape change” conference proceedings, ECLAS 2005, Ankara, pp 3–15

  10. Antrop M, Van Eetvelde V (2017) Landscape perspectives: the holistic nature of landscape. Springer, Dordrecht ((ISBN 978-94-024-1183-6))

    Google Scholar 

  11. Aremu (2007) The historical and archeological significance of Koso Wall. Old Oyo National Park, Nigeria

    Google Scholar 

  12. Arunyawat S, Shrestha RP (2016) Assessing land use change and its impact on ecosystem services in Northern Thailand. Sustainability 8:768–790. https://doi.org/10.3390/su8080768

    Article  Google Scholar 

  13. Baniya N (2008) Land suitability evaluation using GIS for vegetable crops in Kathmandu Valley, Nepal. Ph.D. Dissertation, Institute of Horticulture Science, Faculty of Agriculture, Humboldt University of Berlin, Berlin

  14. Bera S, Das Chatterjee N (2019) Mapping and monitoring of land use dynamics with their change hotspot in North 24-Parganas district, India: a geospatial and statistical-based approach. Model Earth Syst Environ 5:1529–1551. https://doi.org/10.1007/s40808-019-00601-2

    Article  Google Scholar 

  15. Bera MM, Das Chatterjee N, Mondal D (2020) Assessment of micro-habitat of woodland diversity in mountainous urban tract of Gangtok Town, Sikkim. Model Earth Syst Environ 6:1223–1231. https://doi.org/10.1007/s40808-020-00752-7

    Article  Google Scholar 

  16. Berner LT, Law BE (2015) Water limitations on forest carbon cycling and conifer traits along a steep climatic gradient in the Cascade Mountains, Oregon. Biogeosciences 12:6617–6635

    Article  Google Scholar 

  17. Borda-Nino M, Meli P, Brancalion PHS (2020) Drivers of tropical forest cover increase: a systematic review. Land Degrad Dev 31(11):1366–1379. https://doi.org/10.1002/ldr.3534

    Article  Google Scholar 

  18. Botequilha Leitao A, Miller J, Ahern J, McGarigal K (2006) Measuring landscapes: a planner’s handbook. Island Press, Washington

    Google Scholar 

  19. Brown MT, Vivas MB (2005) Landscape development intensity index. Environ Monit Assess 101:289–309

    Article  Google Scholar 

  20. Buitenwerf R, Bond WJ, Stevens N, Trollope WSW (2012) Increased tree densities in South African Savannas: >50 years of data suggests CO2 as a driver. Glob Chang Biol 18:675–684

    Article  Google Scholar 

  21. Bürgi M, Anna M, Nina S (2004) Driving forces of landscape change—current and new directions. Landsc Ecol 19:857–868

    Article  Google Scholar 

  22. Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann JPW, Almond REA, Baillie JEM, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, Davidson NC, Dentener F, Foster M, Galli A, Galloway JN, Genovesi P, Gregory RD, Hockings M, Kapos V, Lamarque J, Leverington F, Loh J, McGeoch MA, McRae L, Minasyan A, Morcillo MH, Oldfield TEE, Pauly D, Quader S, Revenga C, Sauer JR, Skolnik B, Spear D, Stanwell-Smith D, Stuart SN, Symes A, Tierney M, Tyrrell TD, Vié J, Watson R (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168

    Article  Google Scholar 

  23. Nigerian Conservation Foundation (2012) Categories of Biodiversity sites in Nigeria. Federal Ministry of Environment 2015 Federal

  24. Chatelain C, Bakayoko A, Martin P, Gautier L (2010) Monitoring tropical forest fragmentation in the Zagné-Taï area (west of Taï National Park, Côte d’Ivoire). Biodivers Conserv 19:2405–2420. https://doi.org/10.1007/s10531-010-9847-4

    Article  Google Scholar 

  25. Chazdon RL (2003) Tropical forest recovery: legacies of human impact and natural disturbances. Perspect Plant Ecol Evol Syst 6:51–71

    Article  Google Scholar 

  26. Chazdon RL, Peres CA, Dent D, Sheil D, Lugo AE, Lamb D, Stork NE, Miller SE (2009) The potential for species conservation in tropical secondary forests. Conserv Biol 23:1406–1417

    Article  Google Scholar 

  27. Chmielewski TJ, Myga-Piątek U, Solon J (2015) TypologiaaktualnychkrajobrazówPolski. Przegląd Geograficzny 87:377–408

    Article  Google Scholar 

  28. Conrad E, Cassar LF (2012) Landscape approaches for ecosystem management in Mediterranean islands. Institute of Earth Systems, University of Malta, Msida ((ISBN 978-99957-808-0-7))

    Google Scholar 

  29. Cotter M, Berkhoff K, Gibreel T, Ghorbani A, Golbon R, Nuppenau EA, Sauerborn J (2014) Designing a sustainable land use scenario based on a combination of ecological assessments and economic optimization. Ecol Indic 36:779–787

    Article  Google Scholar 

  30. Dakin S (2003) There’s more to landscape than meets the eye: towards inclusive landscape assessment in resource and environmental management. Can Geogr 47:185–200

    Article  Google Scholar 

  31. Dale VH, Beyeler SC (2001) Challenges in the developmenand use of ecological indicators. Ecol Ind 1(1):3–10

    Article  Google Scholar 

  32. DeCicco JM (2013) Biofuel’s carbon balance: doubts, certainties and implications. Clim Change 121:801–814

    Article  Google Scholar 

  33. Defries RS, Foley JA, Asner GP (2008) Ecosystem function. Ecology 2(5):249–257

    Google Scholar 

  34. Dietzel C, Herold M, Hemphell J, Clarke KC (2005) Spatio-temporal dynamics in California’s central valley: empirical links to urban theory. Int J Geogr Inf Sci 19(2):175–195

    Article  Google Scholar 

  35. Dlamini WM (2016) Analysis of deforestation patterns and drivers in Swaziland using efficient Bayesian multivariate classifiers. Model Earth Syst Environ 2:1–14. https://doi.org/10.1007/s40808-016-0231-6

    Article  Google Scholar 

  36. Dong X, Liu L, Wang J, Shi J, Pan J (2007) Analysis of the landscape change at River Basin scale based on SPOT and TM fusion remote sensing images: a case study of the Weigou River Basin on the Chinese Loess Plateau. Int J Earth Sci (GeolRundsch). https://doi.org/10.1007/s00531-007-0271-2

    Article  Google Scholar 

  37. El Adnani A, Habib A, El Khalidi K, Zourarah B (2019) Spatio-temporal dynamics and evolution of land use land cover using remote sensing and GIS in Sebou Estuary, Morocco. J Geogr Inf Syst 11:551–566. https://doi.org/10.4236/jgis.2019.115034

    Article  Google Scholar 

  38. Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x

    Article  Google Scholar 

  39. Ellis EC (2015) Ecology in an anthropogenic biosphere. Ecol Monogr 85:287–331

    Article  Google Scholar 

  40. ESRI (2016) ArcGIS desktop: release 10.4. Environmental Systems Research Institute, Redlands

    Google Scholar 

  41. Ettera A, Andrade A, Nelson CR, Cortésa J, Saavedra K (2020) Assessing restoration priorities for high-risk ecosystems: an application of the IUCN Red List of Ecosystems. Land Use Policy 99:104874. https://doi.org/10.1016/j.landusepol.2020.104874

    Article  Google Scholar 

  42. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34(1):487–515

    Article  Google Scholar 

  43. Farina A (2000) Landscape ecology in action. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  44. Fatubarin A, Olojugba MR (2014) Effect of rainfall season on the chemical properties of the soil of a southern Guinea Savanna ecosystem in Nigeria. JENE 6(4):182–189

    Google Scholar 

  45. Fei Z, Kung HT, Johnson VC (2017) Assessment of land-cover/land-use change and landscape patterns in the two national nature reserves of Ebinur Lake Watershed, Xinjiang, China. Sustainability 9:724

    Article  Google Scholar 

  46. Fick SE, Hijmans RJ (2017) WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int J Climatol 37(12):4302–4315

    Article  Google Scholar 

  47. Foo YS, Numata S (2019) Deforestation and forest fragmentation in and around Endau-Rompin National Park, Peninsular Malaysia. Tropics 28(2):23–37. https://doi.org/10.3759/tropics.MS18-16

    Article  Google Scholar 

  48. Food and Agriculture Organization of the United Nations, FAO (2020) Global Forest Resources Assessment (FRA) Sierra Leone–Report, p 57

  49. Francosoa R, Brandão R, Nogueira C, Salmona Y, Machado RB, Colli GR (2015) Habitat loss and the effectiveness of protected areas in the Cerrado biodiversity hotspot. Nat Conservacao. https://doi.org/10.1016/j.ncon.2015.04.001

    Article  Google Scholar 

  50. Friedman JH, Meulman JJ (2003) Multiple additive regression trees with application in epidemiology. Stat Med 22:1365–1381. https://doi.org/10.1002/sim.1501

    Article  Google Scholar 

  51. Geerling C (1973) Vegetation of Upper Ogun and Old Oyo Game reserve, Department of Forestry, University of Ibadan, pp 34–37

  52. Geist H, Lambin E, McConnell W, Alves D (2005) Causes, trajectories and syndromes of land–use/cover change, UPDATE Newsletter of the International Human Dimensions Programme on Global Environmental Change, 03/2005, pp 6–7

  53. Geldmann J, Barnes M, Coad L, Craigie I, Hockings M, Burgess N (2013) Effectiveness of terrestrial protected areas in reducing biodiversity and habitat loss. CEE 10-007. Collaboration for Environmental Evidence. www.environmentalevidence.org/SR10007

  54. Gokyer E (2013) Understanding landscape structure using landscape metrics. Adv Landsc Archit 25:663–676. https://doi.org/10.5772/55758

    Article  Google Scholar 

  55. Gradstein RS, Homeier J, Gansert D (eds) (2010) Tropical mountain forest: patterns and processes in a biodiversity hotspot. University of Akron Press, Akron, p 224

    Google Scholar 

  56. Gu H, Wang J, Ma L, Shang Z, Zhang Q (2019) Insights into the BRT (boosted regression trees) method in the study of the climate growth relationship of Masson pine in subtropical China. Forests 10:228. https://doi.org/10.3390/f10030228

    Article  Google Scholar 

  57. Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song D, Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:e1500052

    Article  Google Scholar 

  58. Hamid AA, Usman LA, Elaigwu SE, Zubair MF (2010) Environmental and health risk of bush burning. Adv Environ Biol 4(2):2411–3249

    Google Scholar 

  59. Hamunyela E, Brandt P, Shirima D, Dob HTT, Herold M, Roman-Cuesta RM (2020) Space-time detection of deforestation, forest degradation and regeneration in montane forests of Eastern Tanzania. Int J Appl Earth Obs Geoinf 88:102063. https://doi.org/10.1016/j.jag.2020.102063

    Article  Google Scholar 

  60. Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatol 34:623–642. https://doi.org/10.1002/joc.3711

    Article  Google Scholar 

  61. Hartter J, Southworth J (2009) Dwindling resources and fragmentation of landscapes around parks: wetlands and forest patches around Kibale National Park, Uganda. Landsc Ecol 24:643–656. https://doi.org/10.1007/s10980-009-9339-7

    Article  Google Scholar 

  62. Hastie T, Tibshirani R, Friedman J (2009) Unsupervised learning. In: The elements of statistical learning. Springer, New York, pp 485–585. https://doi.org/10.1007/978-0-387-84858-7_14

  63. Hengl T, Mendes de Jesus J, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, Blagotić A et al (2017) SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12(2):e0169748. https://doi.org/10.1371/journal.pone.0169748

    Article  Google Scholar 

  64. Hu Y, Hu Y (2020) Detecting forest disturbance and recovery in Primorsky Krai, Russia, using annual landsat time series and multi-source land cover products. Remote Sens 12:129. https://doi.org/10.3390/rs12010129

    Article  Google Scholar 

  65. Hunter ML, Schmiegelow FKA (2011) Wildlife, forests, and forestry: principles of managing forests for biological diversity, 2nd edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  66. Imasuen OI, Oshodi JN, Onyeobi TUS (2013) Protected areas for environmental sustainability in Nigeria. J Appl Sci Environ Manag 17(1):53–58

    Google Scholar 

  67. International Geosphere Biosphere Programme Land-Cover Classification System. www.eomf.ou.edu/static/IGBP.pdf. Accessed 1 Feb 2019

  68. Jacob DE, Nelson IU (2015) A survey of Sclater’s Guenon in Ikot Uso Akpan Community Forest, Itu, Nigeria, Intl. J Mol Ecol Conserv 5(2):32–38

    Google Scholar 

  69. Jalkanen J, Toivonen T, Moilanen A (2020) Identification of ecological networks for land-use planning with spatial conservation prioritization. Landsc Ecol 35:353–371. https://doi.org/10.1007/s10980-019-00950-4

    Article  Google Scholar 

  70. Kabite G, Muleta MK, Gessesse B (2020) Spatiotemporal land cover dynamics and drivers for Dhidhessa River Basin (DRB), Ethiopia. Model Earth Syst Environ 6:1089–1103. https://doi.org/10.1007/s40808-020-00743-8

    Article  Google Scholar 

  71. Keay RWJ (1959) An outline of Nigerian vegetation. Government

  72. Kija HK, Ogutu JA, Mangewa LJ, Bukombe J, Verones F, Graae BJ, Kideghesho JR, Said M, Nzunda EF (2020) Spatio-temporal changes in wildlife habitat quality in the greater Serengeti ecosystem. Sustainability 12:2440. https://doi.org/10.3390/su12062440

    Article  Google Scholar 

  73. Kirchmair I (2017) Biogeography of West African Gallery Forests. Ph.D. Thesis, JohannWolfgang Goethe-Universität, Frankfurt, Germany, 29 September 2017. http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/44536. Accessed 17 Oct 2020

  74. Kwang C, Osei EM, Amoah AS (2018) Comparing of landsat 8 and sentinel 2A using Water Extraction Indexes over Volta River. J Geogr Geol 10(1):1–7. https://doi.org/10.5539/jgg.v10n1p1

    Article  Google Scholar 

  75. Lambin EF, Geist H (2006) Land-use and land-cover change: local processes and global impacts. Springer, Berlin

    Google Scholar 

  76. Lausch A, Blaschke T, Haase D, Herzog F, Syrbe R, Tischendorf L, Walz U (2015) Understanding and quantifying landscape structure—a review on relevant process characteristics, data models and landscape metrics. Ecol Model 295(1):31–41. https://doi.org/10.1016/j.ecolmodel.2014.08.018

    Article  Google Scholar 

  77. Li H, Wu J (2004) Use and misuse of landscape indices. Landsc Ecol 19(389):399

    Google Scholar 

  78. Loures L, Loures A, Nunes JR, Panagopoulos T (2015) Landscape valuation of environmental amenities throughout the application of direct and indirect methods. Sustainability 7:794–810

    Article  Google Scholar 

  79. Lu D, Mausel P, Brondizio E, Moran E (2004) Change detection techniques. Int J Remote Sens 25:2365–2401

    Article  Google Scholar 

  80. Lucas R, Rowlands A, Brown A, Keyworth S, Bunting P (2007) Rule-based classification of multi-temporal satellite imagery for habitat and agricultural land cover mapping. ISPRS J Photogramm Remote Sens 62:165–185

    Article  Google Scholar 

  81. Matsushita B, Xu M, Fukushima T (2006) Characterizing the changes in landscape structure in the lake Kasumigaura Basin, Japan using a high-quality GIS dataset. Landsc Urban Plan 78:241–250

    Article  Google Scholar 

  82. McGarigal K, Cushman AS, Neel CM, Ene E (2002) Fragstats: spatial pattern analysis program for categorical maps, Version 3.3

  83. Michinaka T, Miyamoto M, Yokota Y, Sokh H, Lao S, Ma V (2013) Factors affecting forest area changes in Cambodia: an econometric approach. J Sustain Dev 6(5):12–25

    Article  Google Scholar 

  84. Mohamed A, Worku H, Kindu M (2019) Quantification and mapping of the spatial landscape pattern and its planning and management implications a case study in Addis Ababa and the surrounding area, Ethiopia. Geol Ecol Landsc. https://doi.org/10.1080/24749508.2019.1701309

    Article  Google Scholar 

  85. Mwangi N, Waithaka H, Mundia C et al (2020) Assessment of drivers of forest changes using multi-temporal analysis and boosted regression trees model: a case study of Nyeri County, Central Region of Kenya. Model Earth Syst Environ 6:1657–1670. https://doi.org/10.1007/s40808-020-00781-2

    Article  Google Scholar 

  86. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca CAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  Google Scholar 

  87. Napit R (2015) Species diversity, forest community structure and regeneration in Banke National Park, Nepal. J Sci Technol 16(1):17–30

    Google Scholar 

  88. Nasehi S, Imanpour NA (2020) Assessment of urban green space fragmentation using landscape metrics (case study: district 2, Tehran city). Model Earth Syst Environ 6:2405–2414. https://doi.org/10.1007/s40808-020-00809-7

    Article  Google Scholar 

  89. Nigeria National Park Service (2010) Evolution of parks in Nigeria. www.nigeriaparkservice.org/okomu/default.aspx. Accessed 21 May 2013

  90. Nigussie G, Fekadu M, Demissew S et al (2019) Impact of conservation management on land change: a case study in Guassa Community Conservation Area for the last 31 years (1986–2015). Model Earth Syst Environ 5:1495–1504. https://doi.org/10.1007/s40808-019-00650-7

    Article  Google Scholar 

  91. Nunez MN, Ciapessoni HH, Rolla A, Kalnay E, Cai M (2008) Impact of land use and precipitation changes on surface temperature trends in Argentina. J Geophys Res 113:D06111. https://doi.org/10.1029/2007JD008638

  92. Nurda N, Noguchi R, Ahamed T (2020) Change detection and land suitability analysis for extension of potential forest areas in Indonesia using satellite remote sensing and GIS. Forest 11:398. https://doi.org/10.3390/f11040398

    Article  Google Scholar 

  93. Ode A, Hägerhäll CM, Sang N (2010) Analysing visual landscape complexity: theory and application. Landsc Res 35:111–131

    Article  Google Scholar 

  94. Ogogo AUS, Asuk A, Ikpeme RV (2014) Evaluation of the anti-poaching programme of the cross river National Park Okwango Division, Nigeria 2002 to 2013. Open J For 4:507–511

    Google Scholar 

  95. Oladeji SO, Agbelusi EA (2014) Conservation status of fauna and flora resources composition and distribution in Old Oyo National Park: a key for sustainable natural resource management. J Environ Ecol Manag 4:1–30

    Google Scholar 

  96. Oladeji SO, Agbelusi EA, Trevelyan R (2012) Anthropogenic activities threatening the Management of the Ecotourism resources in Old Oyo National Park, Nigeria. Ethiop J Environ Stud Manag 5(1):100–111

    Google Scholar 

  97. Olaniyi OE, Ogunjemite BG, Akindele SO, Sogbohossou EA (2018) Temporal and distance decay analysis of land use/land cover around ecotourism hotspots: evidence from Pendjari National Park. Benin GeoJournal 85(1):53–66. https://doi.org/10.1007/s10708-018-9948-2

    Article  Google Scholar 

  98. Olaniyi OE, Akinsorotan OA, Zakaria M, Martins CO, Adebola SI, Oyelowo OJ (2019) Taking the edge off host communities’ dependence on protected areas in Nigeria. IOP Conf Ser Earth Environ Sci 269:012039

    Article  Google Scholar 

  99. Old Oyo National Park (2014) Nigeria National Park Service. Accessed 24 Nov 2014

  100. Oliveras I, Malhi Y (2016) Many shades of green: the dynamic tropical forest–savannah transition zones. Philos Trans R Soc B Biol Sci 371:20150308

    Article  Google Scholar 

  101. Olofsson P, Foody GM, Stehman SV, Woodcock CE (2013) Making better use of accuracy data in land change studies: estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens Environ 129:122–131. https://doi.org/10.1016/j.rse.2012.10.031

    Article  Google Scholar 

  102. Omeja PA, Lawes MJ, Corriveau A, Valenta K, Sarkar D, Paim FP, Chapman CA (2016) Recovery of tree and mammal communities during large-scale forest regeneration in Kibale National Park, Uganda. Biotropica 48(6):770–779. https://doi.org/10.1111/btp.12360

    Article  Google Scholar 

  103. Orsi F, Geneletti D, Newton AC (2011) Towards a common set of criteria and indicators to identify forest restoration priorities: an expert panel-based approach. Ecol Indic 11(2):337–347. https://doi.org/10.1016/j.ecolind.2010.06.001

    Article  Google Scholar 

  104. Oyeleke OO, Odewumi OS, Mustapha RA (2015) Assessment of management practices for ungulates in Old Oyo National Park, Nigeria. Ethiop J Environ Stud Manag 8(5):548–555. https://doi.org/10.4314/ejesm.v8i5.8

    Article  Google Scholar 

  105. Pereira HM, Leadley PW, Proença V, Alkemade R, Scharlemann JPW, Fernandez-Manjarrés JF, Araújo MB, Balvanera P, Biggs R, Cheung WWL, Chini L, Cooper HD, Gilman EL, Guénette S, Hurtt GC, Huntington HP, Mace GM, Oberdorff T, Revenga C, Rodrigues P, Scholes RJ, Sumaila UR, Walpole M (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501

    Article  Google Scholar 

  106. Porter-Bolland L, Ellis EA, Cholz FL (2007) Land use dynamics and landscape history in La Monta˜ na, Campeche. Landsc Urban Plan 82:198–207

    Article  Google Scholar 

  107. Primack RB (2014) Essentials of conservation biology. In: 3. Proceedings, ECLAS 2005, Ankara, 6th edn. Sinauer Associates, Sunderland, pp 3–15

  108. Quitián M, Santillán V, Espinosa CI, Homeier J, Böhning-Gaese K, Schleuning M, Neuschulz EL (2017) Elevation-dependent effects of forest fragmentation on plant–bird interaction networks in the tropical Andes. Ecography 40:1–10. https://doi.org/10.1111/ecog.03247

    Article  Google Scholar 

  109. Rahman A, Kumar S, Fazal S, Siddiqui MA (2012) Assessment of land use/land cover change in the North-West District of Delhi using remote sensing and GIS techniques. J Indian Soc Remote Sens 40:689–697. https://doi.org/10.1007/s12524-011-0165-4

    Article  Google Scholar 

  110. Ramankutty N, Archard F, Aves D, Turner BL II, Defries R, Goldewijk KK, Graumlich L, Reid RS (2005) Global changes in land cover, UPDATE Newsletter of the International Human Dimensions Programme on. Glob Environ Change 03(2005):4–5

    Google Scholar 

  111. Rands MRW, Adams WM, Bennun L, Stuart HMB, Clements A, Coomes D, Entwistle A, Hodge I, Kapos V, Sharlemann JPW, Sutherland WJ, Vira B (2010) Biodiversity conservation: challenges beyond 2010. Science 329:1298–1303

    Article  Google Scholar 

  112. Rhim S, Lee W (2007) Influence of Forest Fragmentation on the Winter Abundance of Mammals in Mt. Chirisan National Park, South Korea. J Wildl Manag 71(5):1404–1408. https://doi.org/10.2193/2005-584

    Article  Google Scholar 

  113. Ridding LE, Watson SCL, Newton AC, Rowland CS, Bullock JM (2020) Ongoing, but slowing, habitat loss in a rural landscape over 85 years. Landsc Ecol 35:257–273. https://doi.org/10.1007/s10980-019-00944-2(0123456

    Article  Google Scholar 

  114. Robinson JG (2011) Ethical pluralism, pragmatism, and sustainability in conservation practice. Biol Conserv 144:958–965

    Article  Google Scholar 

  115. Sahney S, Benton MJ, Falcon-Lang HJ (2010) Rainforest collapse triggered Pennsylvanian tetrapod diversification in Euramerica. Geology 38(12):1079–1082

    Article  Google Scholar 

  116. Schuur EA (2003) Productivity and global climate revisited: the sensitivity of tropical forest growth to precipitation. Ecology 84:1165–1170

    Article  Google Scholar 

  117. Selman P (2012) Landscapes as integrating frameworks for human, environmental and policy processes. In: Plieninger T, Bieling C (eds) Resilience and the cultural landscape. Cambridge University Press, Cambridge

    Google Scholar 

  118. Sharma K, Robeson SM, Thapa P, Saikia A (2016) Land use/land-cover change and forest fragmentation in the Jigme Dorji National Park, Bhutan. Phys Geogr. https://doi.org/10.1080/02723646.2016.1248212

    Article  Google Scholar 

  119. Sharma P, Thapa RB, Matin MA (2020) Examining forest cover change and deforestation drivers in Taunggyi District, Shan State, Myanmar. Environ Dev Sustain 22:5521–5538. https://doi.org/10.1007/s10668-019-00436-y

    Article  Google Scholar 

  120. Sibanda S, Ahmed F (2020) Modelling historic and future land use/land cover changes and their impact on wetland area in Shashe sub-catchment, Zimbabwe. Model Earth Syst Environ. https://doi.org/10.1007/s40808-020-00963-y

    Article  Google Scholar 

  121. Sims KRE (2014) Do protected areas reduce forest fragmentation? A microlandscapes approach. Environ Resource Econ 58:303–333. https://doi.org/10.1007/s10640-013-9707-2

    Article  Google Scholar 

  122. Southworth J, Nagendra H, Carlson LA, Tucker C (2004) Assessing the impact of Celaque National Park on forest fragmentation in western Honduras. Appl Geogr 24:303–322. https://doi.org/10.1016/j.apgeog.2004.07.003

    Article  Google Scholar 

  123. Spracklen DV, Righelato R (2014) Tropical montane forests are a larger than expected global carbon store. Biogeosciences 11:2741–2754

    Article  Google Scholar 

  124. Stevens N, Lehmann CER, Murphy BP, Durigan G (2016) Savanna woody encroachment is widespread across three continents. Glob Chang Biol 23:235–244

    Article  Google Scholar 

  125. Stolton S, Dudley N, Avcıoglu CB, Hunter D, Ivanic KZ, Kanga E, Kettunen M, Kumagai Y, Maxted N, Senior J, Wong M, Keenleyside K, Mulrooney D, Waithaka J (2015) Values and benefits of protected areas’. In: Worboys GL, Lockwood M, Kothari A, Feary S, Pulsford I (eds) Protected area governance and management. ANU Press, Canberra, pp 145–168

    Google Scholar 

  126. Surya B, Ahmad DNA, Sakti HH, Sahban H (2020) Land use change, spatial interaction, and sustainable development in the metropolitan urban areas, South Sulawesi Province, Indonesia. Land 9:95. https://doi.org/10.3390/land9030095

    Article  Google Scholar 

  127. Talukdar NR, Choudhury P, Ahmad F et al (2020) Habitat suitability of the Asiatic elephant in the trans-boundary Patharia Hills Reserve Forest, northeast India. Model Earth Syst Environ 6:1951–1961. https://doi.org/10.1007/s40808-020-00805-x

    Article  Google Scholar 

  128. Thorn A, Thompson J, Plisinski J (2016) Patterns and predictors of recent forest conversion in New England. Land 5:30. https://doi.org/10.3390/land5030030

    Article  Google Scholar 

  129. Tomaselli V, Dimopoulos P, Arangi C, Kallimanis AS, Adamo M, Tarantino C, Panitsa M, Terzi M, Veronico G, Lovergine FP (2013) Translating land cover/land use classifications to habitat taxonomies for landscape monitoring: a Mediterranean assessment. Landsc Ecol 28:905–930

    Article  Google Scholar 

  130. Turner MG (2005) Landscape ecology in North America: past, present, and future. Ecology 86:1967–1974

    Article  Google Scholar 

  131. Turner RE, Rabalais NN, Justic D, Dortc Q (2003) Global patterns of dissolved N, Pand Si in large rivers. Biogeochemistry 64(3):297–317

    Article  Google Scholar 

  132. Uuemaa E, Mander Ü, Marja R (2013) Trends in use of landscape spatial metrics as landscape indicators: a review. Ecol Indic 28:100–106

    Article  Google Scholar 

  133. Van den Berg LJL, Bullock JM, Clarke RT, Langsten RHW, Rose RJ (2001) Territory selection by the Dartford warbler (Sylvia undata) in Dorset, England: the role of vegetation type, habitat fragmentation and population size. Biol Conserv 101:217–228

    Article  Google Scholar 

  134. Verburg PH, Veldkamp WSA, Espaldon RLV, Mastura SSA (2002) Modeling the spatial dynamics of regional landuse: the CLUE-S Model. Environ Manag 30(3):301–405

    Article  Google Scholar 

  135. Wang Z, Deng X, Song W, Li Z, Chen J (2017) What is the main cause of grassland degradation? A case study of grassland ecosystem service in the middle-south Inner Mongolia. CATENA 150:100–107

    Article  Google Scholar 

  136. West PC, Gibbs HK, Monfred C, Wagner J, Barford CC, Carpenter SR, Foley JA (2010) Trading carbon for food: global comparison of carbon stocks vs. crop yields on agricultural land. Proc Natl Acad Sci 107:19645–19648. https://doi.org/10.1073/pnas.1011078107

    Article  Google Scholar 

  137. Wiens JA (2008) Landscape ecology as a foundation for sustainable conservation. Landsc Ecol 24:1053–1065

    Article  Google Scholar 

  138. WoldeYohannes A, Cotte M, Kelboro G, Dessaleg W (2017) Land use and land cover changes and their effects on the landscape of Abaya Chamo Basin, Southern Ethiopia. Land 7(2):1–17. https://doi.org/10.3390/land7010002

    Article  Google Scholar 

  139. Yuan F, Sawaya KE, Loeffelhol BC, Bauer ME (2005) Land cover classification and change analysis of the Twin Cities (Minnesota). Metropolitan Area by multi-temporal Landsat remote sensing. Remote Sens Environ 98(2 & 3):317–328

    Article  Google Scholar 

  140. Zhao Q, Wen Z, Chen S, Ding S, Zhang M (2019) Quantifying land use/land cover and landscape pattern changes and impacts on ecosystem services. Int J Environ Res Public Health 17(1):126. https://doi.org/10.3390/ijerph17010126

    Article  Google Scholar 

Download references

Acknowledgements

We are profoundly grateful to the Nigerian National Park Service for the issuance of the entry permit into the study area. Also, we appreciate the immense efforts of Messers Peter Ajiibi and Umar Yusuf Tanko during the data collection stage.

Author information

Affiliations

Authors

Contributions

Study conception: OEO. Investigation—data collection: OEO and OHO. Methodology, computation, and formal analysis: OEO. Writing manuscript and review: OEO and OHO. Supervision: OEO. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Oluwatobi Emmanuel Olaniyi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Olaniyi, O.E., Omowale, H.O. Evaluating the dynamics and eco-climatic predictors of forest conversion and restoration in Old Oyo National Park, Nigeria using geospatial and machine learning techniques. Model. Earth Syst. Environ. (2021). https://doi.org/10.1007/s40808-021-01100-z

Download citation

Keywords

  • Forest
  • Fragmentation
  • Transition
  • Restoration
  • National park
  • Nigeria