Skip to main content
Log in

Estimating the influence of precipitation variability by considering effect of middle atmosphere parameters on lower atmosphere over upper Blue Nile basin in Ethiopia

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

Precipitation over upper Blue Nile basin (UBNB) exhibits complex variability because of topographical features and the variability in tropopause temperature. The factors affecting its temporal and spatial distribution are not well known over the UBNB. Since precipitation is influenced by middle and lower atmosphere parameters such as greenhouse gases (carbon dioxide and methane), ozone concentration, incident solar radiation, gravity wave dispersion, cloud cover, and temperature. There is no study conducted to estimate precipitation variability using these parameters. In this study, we investigated the influence of precipitation variability by considering the effect of the middle atmosphere on lower atmospheres over UBNB in Ethiopia. Most of the data sets used in this study are derived from the European Centre for Medium-range Weather Forecast (ECMWF), in situ measurements and the Global monitoring division of National Oceanic and Atmospheric Administration. The results indicate that the correlation between ECMWF and in situ precipitation and temperature data is 0.82 and 0.32, respectively. The maximum ozone concentration is found during the summer season (6.2 × 10−3 kg m−2). In this season, precipitation and cloud cover has positive correlations and both are negative correlations with temperature and incident solar radiation. The observed positive trend in temperature is associated with the enhancement of greenhouse gases. Cloud cover and ozone is quite useful for reduced incident solar radiation. Ozone is increased with temperature for all seasons except winter. Gravity wave dispersion affects the spatial distributions of temperature. Finally, we conclude that precipitation is directly influenced by temperature and incident solar radiation and indirectly affected by gravity waves, ozone concentration, and greenhouse gases. To draw a better conclusion, further study is needed with water vapor nuclei on precipitation variability in addition to middle atmospheric parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abera W, Giuseppe F, Luca B, Riccardo R (2017) Water budget modeling of the upper Blue Nile basin using the JGrass-NewAge model system and satellite data. Hydrol Earth Syst Sci Discuss. https://doi.org/10.5194/hess-2016-290

    Article  Google Scholar 

  • Akinyemi ML (2010) Total ozone as a stratospheric indicator of climate variability over West Africa. Int J Phys Sci 5(5):447–451

    Google Scholar 

  • Alemseged TH, TomRientjes (2015) Evaluation of regional climate model simulations of rainfall over the upper Blue Nile basin. Atmos Res 161-162:57–64 (2015). Journal homepage: http://www.elsevier.com/locate/atmos

    Article  Google Scholar 

  • Allam MM, Figueroa AJ, McLaughlin DB, Eltahir EAB (2016) Estimation of evaporation over the upper Blue Nile basin by combining observations from satellites and river flow gauges. Water Resour Res 52(2):644–659

    Article  Google Scholar 

  • Attaullah K, Shuanggen J (2016) Effect of gravity waves on the tropopause temperature, height and water vapor in Tibet from COSMIC GPS radio occultation observations. J Atmos Solar Terr Phys 138–139:23–31

    Google Scholar 

  • Aurélien P, Riwal P, Hertzog A, Jensen E (2017) Impact of gravity waves on the motion and distribution of atmospheric ice particles. Atmos Chem Phys Discuss. https://doi.org/10.5194/acp-2017-1029

    Article  Google Scholar 

  • Ayehu T, Tsegaye T, Berhan G, Tufa D (2018) Validation of new satellite rainfall products over the upper Blue Nile basin, Ethiopia. Atmos Meas Tech 11:1921–1936. https://doi.org/10.5194/amt-11-1921

  • Beckers M, Rixen M (2003) EOF calculations and data filling from incomplete oceanographic datasets. American Meteorological Society. J Atmos Ocean Technol 20:1839–1855

    Article  Google Scholar 

  • Bellerby T (2007) Satellite rainfall uncertainty estimation using an artificial neural network. J Hydrometeorol 8:1397–1412

    Article  Google Scholar 

  • Brocca L, Ciabatta L, Massari C, Moramarco T, Hahn S, Hasenauer S, Kidd R, Dorigo W, Wagner W, Levizzani V (2014) Soil as a natural rain gauge: estimating global rainfall from satellite soil moisture data. J Geophys Res Atmos 119:5128–5141

    Article  Google Scholar 

  • California Climate Change Center (2006) Scenarios of climate change in California: overview. CEC 186-SF, 500–2005

  • Conway D (1997) A water balance model of the Upper Blue Nile in Ethiopia. Hydrol Sci J 42(2):265–286

    Article  Google Scholar 

  • Conway D (2000) The climate and hydrology of the Upper Blue Nile, Ethiopia. Geogr J 166:49–62

    Article  Google Scholar 

  • Department of Environmental Affairs (DEA) (2011) South Africa’s second national communication under the United Nations framework convention on climate change. Department of Environmental Affairs, Pretoria

    Google Scholar 

  • Dinh T, Podglajen A, Hertzog A, Legras B, Plougonven R (2016) Effect of gravity wave temperature fluctuations on homogeneous ice nucleation in the tropical tropopause layer. Atmos Chem Phys 16:35–46. https://doi.org/10.5194/acp-16-35-2016

    Article  Google Scholar 

  • Diro I, Black E, Grimes DIF (2018) Seasonal forecasting of Ethiopian spring rains. Meteorol Appl 15:73–83

    Article  Google Scholar 

  • Elliott J et al (2013) Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc Natl Acad Sci USA 111:3239–3244. https://doi.org/10.1073/pnas.1222474110

    Article  Google Scholar 

  • Ganguly R, Kumar D, Ganguli P, Short G, Klausner J (2015) Water stress on power production. J Clim Adapt Inform Comput Sci Eng 17:53–60. https://doi.org/10.1109/MCSE.2015.106

    Article  Google Scholar 

  • Gettelman A, Hegglin MI, Son W et al (2010) Multimodel assessment of the upper troposphere and lower stratosphere: tropics and global trends. J Geo Phys Res 115:D00M08. https://doi.org/10.1029/2009JD013638

    Article  Google Scholar 

  • Gettelman A, Hoor P, Pan L, Randel J, Hegglin I, Birner T (2011) The extratropical upper troposphere and lower stratosphere. Rev Geophys 49:RG3003. https://doi.org/10.1029/2011RG000355

    Article  Google Scholar 

  • Harte J (1998) Consider a spherical cow. University Science Books, California

    Google Scholar 

  • Holton R, Haynes H, McIntyre ME, Douglass R, Rood B, Pfister L (1995) Stratosphere–troposphere exchange. Rev Geophys 33:403–439

    Article  Google Scholar 

  • Hong Y, Hsu K, Moradkhani H, Sorooshian S (2006) Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response. Water Resour Res 42:8

    Article  Google Scholar 

  • Hossein T, Meron T, Patrick W (2015) Statistical assessment of precipitation trends in the upper Blue Nile River basin. Stoch Environ Res Risk Assess (Springer) 1:1. https://doi.org/10.1007/s00477-015-1046-0

    Article  Google Scholar 

  • Houseago-Stokes RE, Challenor PG (2004) Using PPCA to estimate EOFS in the presence of missing values. American Meteorological Society. J Atmos Oceanic Technol 21:1471–1480

    Article  Google Scholar 

  • Huffman J, Bolvin T, Nelkin J, Wolff B, Adler F, Gu G, Hong Y, Bowman P, Stocker F (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55

    Article  Google Scholar 

  • Insam H, Wett B (2008) Control of GHG emission at the microbial community level. Waste Manag 28:699–706

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2013) The physical science basis. In: Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva

  • Jacob J, Winner A (2009) Effect of climate change on air quality. Atmos Environ 43:51–63

    Article  Google Scholar 

  • Jane C, Kathleen M, Narendra O, Tim B (2016) The influence of temperature on ozone production under varying NOx conditions—a modeling study. Atmos Chem Phys 16:11601–11615. https://doi.org/10.5194/acp-16-11601

  • Jensen J, Pfister L, Bui P, Lawson P, Baumgardner D (2010) Ice nucleation and cloud microphysical properties in tropical tropopause layer cirrus. Atmos Chem Phys 10:1369–1384. https://doi.org/10.5194/acp-10-1369-2010

    Article  Google Scholar 

  • Jensen J, Ueyama R, Pfister L, Bui V, Alexander J, Podglajen A, Hertzog A, Woods S, Lawson P, Kim E, Schoeberl R (2016) High-frequency gravity waves and homogeneous ice nucleation in tropical tropopause layer cirrus. Geophys Res Lett 43:6629–6635. https://doi.org/10.1002/2016GL069426

    Article  Google Scholar 

  • Johnston M, McCartney M (2010) Inventory of water storage types in the Blue Nile and Volta river basins. In: IWMI working paper, vol 140. http://dx.doi.org/10.5337/2010.214

  • Kelem G, Derbew A (2017) The frequency of El-Nino and Ethiopian drought. ANM. https://doi.org/10.13140/rg.2.2.25826.73922, https://www.researchgate.net/publication/317888587

  • Kim U, Kaluarachchi J, Smakhtin U (2008) Generation of monthly precipitation under climate change for the upper Blue Nile river basin, Ethiopia. J Am Water Resour Assoc 44:1231–1247. https://doi.org/10.1111/j.1752-1688.2008.00220.x

    Article  Google Scholar 

  • Lakemariam W (2015) Climate change impact on variability of rainfall intensity in the upper Blue Nile basin. Hydrol Sci Water Secur 1:1. https://doi.org/10.5194/piahs-366-135

    Article  Google Scholar 

  • Lars H, Reinhold S, Andrew O, Joan A, Laura H, Olaf S (2016) A decadal satellite record of gravity wave activity in the lower stratosphere to study polar stratospheric cloud formation. Atmos Chem Phys Discuss 1:1. https://doi.org/10.5194/acp-2016-757

    Article  Google Scholar 

  • Liebig M, Morgan J, Reeder Ellert B, Gollany H, Schuman G (2005) Greenhouse gas contributions and mitigation potential of agricultural practices in northwestern USA and western Canada. Soil Tillage Res 83:25–52

    Article  Google Scholar 

  • Lindzen R (1981) Turbulence and stress owing to gravity wave and tidal breakdown. J Geophys Res 86:9707–9714. https://doi.org/10.1029/JC086iC10p09707

    Article  Google Scholar 

  • Litynsky J, Klara S, McIlvried H, Srivastava R (2006) An overview of terrestrial sequestration of carbon dioxide: the United States Department of Energy’s Fossil Energy R&D Program. Clim Change 74(1–3):81–95

    Article  Google Scholar 

  • Liu X, Chen B (2000) Climatic warming in the Tibetan Plateau during recent decades. Int J Clim 20:1729–1742. https://doi.org/10.1002/1097-0088(20001130)20:143.0.CO;2-Y

    Article  Google Scholar 

  • Mariam MA, Anjuli JF, Dennis ML, Elfatih BE (2016) Estimation of evaporation over the upper Blue Nile basin by combining observations from satellites and river flow gauges. Am Geophys Union Res 52:1. https://doi.org/10.1002/2015wr017251

    Article  Google Scholar 

  • Otero N, Sillmann J, Schnell L, Rust HW, Butler T (2016) Synoptic and meteorological drivers of extreme ozone concentrations over Europe. Environ Res Lett 11:024005. https://doi.org/10.1088/1748-9326/11/2/024005

    Article  Google Scholar 

  • Rosenlof KH, Reid GC (2008) Trends in the temperature and water vapor content of the tropical lower stratosphere: sea surface connection. J Geophys Res 113:D06107. https://doi.org/10.1029/2007JD009109

    Article  Google Scholar 

  • Sahlu D, Efthymios I, Semu A, Emmanouil N, Hailu D (2016) First evaluation of the day-1 IMERG over the upper Blue Nile basin. J Hydrometeorol 17:2879–2882

    Article  Google Scholar 

  • Sato K (2000) Sources of gravity waves in the polar middle atmosphere. Adv Polar Upper Atmos 14:233–240

    Google Scholar 

  • Satomura T, Sato K (1999) Secondary generation of gravity waves associated with the breaking of mountain waves. J Atmos Sci 56:3847–3858

    Article  Google Scholar 

  • Semenov MA, Porter R (1995) Climatic variability and the modelling of crop yields. Agric For Meteorol 73(3–4):265–283

    Article  Google Scholar 

  • Shang H, Yan J, Gebremichael M, Ayalew SM (2011) Trend analysis of extreme precipitation in the Northwestern Highlands of Ethiopia with a case study of Debre Markos. Hydrol Earth Syst Sci 15:1937–1944

    Article  Google Scholar 

  • Solberg S, Hov O, Sovde A, Isaksen A, Coddeville P, De Backer H, Forster C, Orsolini Y, Uhse K (2008) European surface ozone in the extreme summer 2003. J Geophys Res Atmos 113:D07307. https://doi.org/10.1029/2007JD009098

    Article  Google Scholar 

  • Solomon S, Rosenlof KH, Portmann RW, Daniel S, Davis M, Sanford J, Plattner G-K (2010) Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327:1219–1223. https://doi.org/10.1126/science.1182488

    Article  Google Scholar 

  • Stillman S, Ninneman J, Zeng X, Franz T, Scott R, Shuttleworth W, Cummins K (2014) Summer soil moisture spatiotemporal variability in southeastern Arizona. J Hydrometeorol 15:1473–1485. https://doi.org/10.1175/JHM-D-13-0173.1

    Article  Google Scholar 

  • Tafesse T (2001) The hydropolitical assessment of the Nile question: an Ethiopian perspective. Water Int 26(4):1–11. https://doi.org/10.1080/02508060108686945

    Article  Google Scholar 

  • Tetzlaff D, Uhlenbrook S (2005) Significance of spatial variability in precipitation for process-oriented modeling: results from two nested catchments using radar and ground station data. Hydrol Earth Syst Sci 9:29–41

    Article  Google Scholar 

  • United Nations, FAO (2011) Food and Agriculture Organaization of United Nations. Viale delle Term di caralalla, Rome, Italy (ISBN 978-92-5-106768-0)

    Google Scholar 

  • Vadas SL, Fritts C, Alexander MJ (2003) Mechanism for the generation of secondary waves in wave breaking regions. J Atmos Sci 60:194–214

    Article  Google Scholar 

  • Vautard R, Honoré C, Beekmann M, Rouil L (2005) Simulation of ozone during the August 2003 heat wave and emission control scenarios. Atmos Environ 39:2957–2967

    Article  Google Scholar 

  • Wubne, Mulatu “Forestry” Ofcansky TP, Berry L (eds) (1991) A country study: Ethiopia. Library of Congress Federal Research Division

Download references

Acknowledgements

The authors are thankful for constant support by Bahir Dar University, Ethiopia and a partial support from Debre Markos University, Ethiopia. Our gratitude goes to Dr. Dawit Amogne, Dr. Degenie Sahalu, and Dr. Melessew Nigusie for their substantial comments and suggestions for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megbar Wonde Birhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birhan, M.W., Raju, U.J.P. & Kenea, S.T. Estimating the influence of precipitation variability by considering effect of middle atmosphere parameters on lower atmosphere over upper Blue Nile basin in Ethiopia. Model. Earth Syst. Environ. 5, 1365–1376 (2019). https://doi.org/10.1007/s40808-019-00596-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-019-00596-w

Keywords

Navigation