Modeling Earth Systems and Environment

, Volume 4, Issue 2, pp 815–823 | Cite as

The use of ALADIN model and MERRA-2 reanalysis to represent dust seasonal dry deposition from 2006 to 2010 in Senegal, West Africa

  • Dialo Diop
  • Abdoulaye Kama
  • Mamadou Simina Drame
  • Moussa Diallo
  • Demba Ndao Niang
Original Article


The objective of this work is to study the seasonal distribution of dust dry deposition in West Africa particularly in Senegal. This initiative is part of the efforts to improve the performance of photovoltaic panels (PV) in dusty environments such as Sahel region. It will help to evaluate the impact of dust dry deposition on these PV. Two climate models including dust modules during 2006–2010, were used: MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications, version 2) reanalysis and ALADIN (Aire Limitée Adaptation dynamique Développement InterNational) model. In Mbour (Senegal), the aerosol optical depth (AOD) from these two products has been validated by in situ data. Indeed, MERRA-2 and ALADIN fairly simulate the AOD with a maximum in March and June. However, these products tend to overestimate measurements, especially for ALADIN. The correlation coefficient between in situ AOD and products is evaluate almost 0.83 for MERRA-2 and 0.72 for ALADIN. From 2007 to 2009, dust deposition measurement campaign was conducted in Mbour. The comparison between these seasonal data and simulations show a right coherence even if MERRA-2 underestimates measurement and ALADIN overestimates it. The correlation compared to in situ measurements is estimate to 0.71 for MERRA-2 and 0.72 for ALADIN. However, the results showed that ALADIN better describes the seasonal dry deposition during dry season which lasts 9 months despite a strong overestimation in winter. Finally, long-term simulation with ALADIN show that dry deposition maximum occurs from December to May in Senegal and throughout the West Africa region.


Dust Deposition ALADIN AOD MERRA-2 Senegal 



We thank Mohamed Mokhtari (Office National de la Météorologie, Algeria) for providing ALADIN simulations.


  1. Aïssa B, Isaifan RJ, Madhavan VE, Abdallah AA (2016) Structural and physical properties of the dust particles in Qatar and their influence on the PV panel performance. Sci Rep 6:31467. CrossRefGoogle Scholar
  2. AL-Salihi AM (2017) Impact of precipitation on aerosols index over selected stations in Iraq using remote sensing technique. Model Earth Syst Environ 3:861. CrossRefGoogle Scholar
  3. Binkowski FS, Roselle SJ (2003) Models-3 Community Multiscale Air Quality (CMAQ) model aerosol component 1. Model description. J Geophys Res 108(D6):4183. CrossRefGoogle Scholar
  4. Bubnová R, Hello G, Bénard P, Geleyn FJ (1995) Integration of the fully elastic equations cast in the hydrostatic pressure terrain following coordinate in the framework of the ALADIN NWP system. Mon Weather Rev 123:515–535CrossRefGoogle Scholar
  5. Buchard V, Randles CA, Silva AD, Darmenov RP, Colarco A, Ferrare R, Hair J, Beyersdorf AJ, Ziemba LD, GovindarajuR YH (2017) The MERRA-2 aerosol reanalysis, 1980 onward. Part II: evaluation and case studies. J Clim 30:6851–6872CrossRefGoogle Scholar
  6. Chauhan A, Zheng S, Xu M et al (2016) Characteristic changes in aerosol and meteorological parameters associated with dust event of 9 March 2013. Model Earth Syst Environ 2:181. CrossRefGoogle Scholar
  7. Chin M, Ginoux P, Kinne S et al (2002) Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements. J Atmos Sci 59:461–483.<0461:TAOTFT>2.0.CO;2 CrossRefGoogle Scholar
  8. Colarco P, da Silva A, Chin M, Diehl T (2010) Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth. J Geophys Res 115-D:14207. CrossRefGoogle Scholar
  9. Dajuma A, Yahaya S, Touré S, Diedhiou A, Adamou R et al (2016) Sensitivity of solar photovoltaic panel efficiency to weather and dust over West Africa: comparative experimental study between Niamey (Niger) and Abidjan (Côte d’Ivoire). Comput Water Energy Environ Eng 5:123–147. CrossRefGoogle Scholar
  10. Engelstaedter S, Washington R (2007) Atmospheric controls on the annual cycle of North African dust. J Geophys Res 112:D03103. CrossRefGoogle Scholar
  11. Fountoukis C, Ackermann L, Ayoub MA et al (2016) Impact of atmospheric dust emission schemes on dust production and concentration over the Arabian Peninsula. Model Earth Syst Environ 2(3):115. CrossRefGoogle Scholar
  12. Gac JY, Carn M, Diallo MI, Orange D et al (1991) Le point sur les observations quotidiennes des brumes sèches au Sénégal de 1984 à 1991. ORSTOM, Dakar, 23p.
  13. Grini A, Myhre G, Zender CS, Isaksen ISA (2005) Model simulations of dust sources and transport in the global atmosphere: effects of soil erodibility and wind speed variability. J Geophys Res 110:D02205. CrossRefGoogle Scholar
  14. Holben B, Eck T, Sluster I, Tanre D, Buis J, Setzer A, Vermote E, Reagan J, Kaufman Y, Nakajima T, Jankoviak FI, Smirmov Z (1998) Aeronet—a federated instrument network and data archive for aerosol characterisation. Rem Sen Environ 66:1–16CrossRefGoogle Scholar
  15. IRENA (2016) Solar PV in Africa: costs and markets. ISBN 978-92-95111-47-9
  16. Kazem HA, Khatib T et al (2013) Effect of dust deposition on the performance of multi-crystalline photovoltaic modules based on experimental measurements. Int J Renew Energy Res 3(4):850–853Google Scholar
  17. Kinne S et al (2006) An AeroCom initial assessment optical properties in aerosol component modules of global models. Atmos Chem Phys 6:1815–1834. CrossRefGoogle Scholar
  18. Mani M, Pillai R (2010) Impact of dust on solar photovoltaic (PV) performance: research status, challenges and recommendations. Renew Sustain Energy Rev 14:3124–3131CrossRefGoogle Scholar
  19. Marticorena B, Haywood J, Coe H, Formenti P, Liousse C, Mallet M, Pelon J (2011) Tropospheric aerosols over West Africa: highlights from the AMMA international program. Atmos Sci Lett 12:19–23CrossRefGoogle Scholar
  20. Marticorena B et al (2017) Mineral dust over west and central Sahel: seasonal patterns of dry and wet deposition fluxes from a pluriannual sampling (2006–2012). J Geophys Res Atmos 122:1338–1364. CrossRefGoogle Scholar
  21. Misra AK, Tripathi A, Naresh R et al (2016) Modelling and analysis of the effects of aerosols in making artificial rain. Model Earth Syst Environ 2:179. CrossRefGoogle Scholar
  22. Mokhtari et al (2015) Three dimensional dust aerosol distribution and extinction climatology over northern Africa simulated with the ALADIN numerical prediction model from 2006 to 2010. Atmos Chem Phys 15:1–20. CrossRefGoogle Scholar
  23. N’Datchoh ET, Diallo I, Konare A, Silue S, Ogunjobi KO, Diedhiou A, Doumbia M (2018) Dust induced changes on the West African summer monsoon features. Int J Climatol 38:452–466CrossRefGoogle Scholar
  24. Ndiaye A, Kebe CMK, Ndiaye PA, Charki A, Kobi A, Sambou V (2013) Impact of dust on the PV modules characteristics after an exposition year in Sahelian environment: the case of Senegal. Int J Phys Sci. Google Scholar
  25. Prospero JM, Glaccum RA, Nees RT et al (1981) Atmospheric transport of soil dust from africa to south america. Nature 289:570–572CrossRefGoogle Scholar
  26. Radnóti G (1995) Comments on A spectral limited-area formulation with time-dependent boundary conditions applied to the shallowwater equations. Mon Weather Rev 123:3122–3123CrossRefGoogle Scholar
  27. Raji KB, Ogunjobi KO, Akinsanola AA (2017) Radiative effects of dust aerosol on West African climate using simulations from RegCM4. Model Earth Syst Environ 3(1):34. CrossRefGoogle Scholar
  28. Randles CA, Silva AD, Buchard V, Colarco PR, Darmenov A, Govindaraju R, Smirnov A, Holben B, Ferrare R, Hair J, Shinozuka Y, Flynn CJ (2017) The MERRA-2 aerosol reanalysis, 1980 onward, part I: system description and data assimilation evaluation. J Clim 30:6823–6850. CrossRefGoogle Scholar
  29. Redelsperger J, Thorncroft C, Diedhiou A, Lebel T, Parker D, Polcher J (2006) African monsoon multidisciplinary analysis: an international project and field campaign. Bull Am Meterol Soc 8:1739–1746CrossRefGoogle Scholar
  30. Reichle RH, Liu Q et al (2017) Land surface precipitation in MERRA-2. J Clim 30:1643–1664. CrossRefGoogle Scholar
  31. Rienecker MM et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648. CrossRefGoogle Scholar
  32. Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change, 2nd edn. Wiley, New York, p 1232 (ISBN-13: 978-0-471-72018-8$4) Google Scholar
  33. Shao Y et al (2001) A model for mineral dust emission. J Geophys Res 106:20239–20254CrossRefGoogle Scholar
  34. Shao Y, Wyrwoll KH, Chappell A et al (2011) Dust cycle: an emerging core theme in earth system science. Aeol Res 2:181–204CrossRefGoogle Scholar
  35. Skonieczny C, Bory A, Bout-Roumazeilles V, Galer W, Crosta SG et al (2013) A three-year time series of mineral dust deposits on the West African margin: sedimentological and geochemical signatures and implications for interpretation of marine paleo-dust records. Earth Planet Sci Lett 364:145–156CrossRefGoogle Scholar
  36. Sulaiman SA, Mat MNH, Guangul FM, Bou-Rabee MA (2015) Real-time study on the effect of dust accumulation on performance of solar PV panels in Malaysia. In: International conference on electrical and information technologies (ICEIT), Marrakech, 2015, pp 269–274.
  37. Swap R, Garstang M, Greco S et al (1992) Saharan dust in the Amazon basin. Tellus 44B:133–149CrossRefGoogle Scholar
  38. Tegen I, Harrison SP, Kohfeld K, Prentice IC, Coe M, Heimann M (2002) Impact of vegetation and preferential source areas on global dust aerosol: results from a model study. J Geophys Res 107(D21):4576CrossRefGoogle Scholar
  39. Tost H, Jöckel P, Kerkweg A, Sander R, Lelieveld J (2006) Technical note: a new comprehensive SCAVenging submodel for global atmospheric chemistry modelling. Atmos Chem Phys 6:565–574,. CrossRefGoogle Scholar
  40. Tulet P, Crassier V, Cousin F, Suhre K, Rosset R (2005) ORILAM, a three-moment lognormal aerosol scheme for mesoscale atmospheric model: online coupling into the Meso-NH-C model and validation on the Escompte campaign. J Geophys Res. Google Scholar
  41. Tulet P, Crahan-Kaku K, Leriche M, Aouizerats B, Crumeyrolle S (2010) Mixing of dust aerosols into mesoscale convective system: generation, filtering and possible feedbacks on ice anvils. Atmos Res 96:302–314. CrossRefGoogle Scholar
  42. Wesely M (1989) Parametrizations of surface resistance to gaseous dry deposition in regional scale, numerical models. Atmos Environ 23:1293–1304CrossRefGoogle Scholar
  43. Yilbas BS et al (2015) Influence of dust and mud on the optical, chemical, and mechanical properties of a PV protective glass. Sci Rep 5:15833–15845CrossRefGoogle Scholar
  44. Zender CS, Newman D, Torres O (2003) Spatial heterogeneity in aeolian erodibility: uniform, topographic, geomorphologic, and hydrologic hypotheses. J Geophys Res 108(D17):4543CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Dialo Diop
    • 1
  • Abdoulaye Kama
    • 2
  • Mamadou Simina Drame
    • 1
    • 3
  • Moussa Diallo
    • 2
  • Demba Ndao Niang
    • 3
  1. 1.FST/Département de Physique, Université Cheikh Anta DiopDakarSénégal
  2. 2.Department of Computer Science, Polytechnic Institute (ESP)University Cheikh Anta Diop de Dakar (UCAD)DakarSénégal
  3. 3.Laboratoire de Physique de l’atmosphère et de l’Océan Siméon FongangUniversité Cheikh Anta DiopDakar-FannSénégal

Personalised recommendations