Advertisement

Modeling Earth Systems and Environment

, Volume 4, Issue 1, pp 241–250 | Cite as

Determining of a complex structure consisting of detachment, fault-bend and fault propagation folds in the collapse structure of Zaghouan-Bouficha (Bouficha region, north eastern Tunisia)

  • Rabeb Ouhibi
  • Houcem Mzali
  • Mohamed Ghanmi
  • Fouad Zargouni
Original Article

Abstract

The structural study in Bouficha region based on subsurface investigation has allowed determining the geometry of deformations. These deformations are represented by faults of NE–SW and NW–SE directions and folds of NE-SW mean orientation. The aim of the present paper is to demonstrate the structural style of these folds and reconstruct their evolution. Data obtained from a seismic profile that cross longitudinally the collapse structure of Zaghouan-Bouficha, have revealed the structure of fault-related folds. The interpretation of the NW-SE seismic profile revealed two fault-propagation folds, a detachment fold and two fault-bend folds in the Zaghouan-Bouficha collapse structure. From the South-east to the North-west, the seismic profile shows: (1) a fault-propagation fold built on a horizontal detachment level situated in the Triassic series linked to a ramp, (2) a detachment fold formed on a detachment level in the Triassic series, (3) a second fault-propagation fold formed on a horizontal detachment in the Triassic series and a ramp, (4) a fault-bend fold overcomes the second fault-propagation fold. It formed over two detachment levels which are connected to a ramp of a dip towards the SE indicating a displacement to the North-west, (5) a second fault-bend fold formed over two detachment levels which are connected to a ramp of a dip towards the NW indicating a displacement to the South-east. The evolution reconstruction of these fault-related folds shows that they formed during the Late Miocene and Plio-Quaternary compressive phases. This study shows also an analogical modeling that explains some evolutionary steps of the determined deformations.

Keywords

Fault-propagation fold Fault-bend fold Detachment fold Compressive phases 3D models Northeastern Tunisia Modeling experience 

References

  1. Abbes C (2004) Structuration et évolution tectonosédimentaire mésozoïques et cénozoïques, associées aux accidents réghmatiques, à la jonction des marges téthysienne et nord-africaine (chaîne Nord-Sud Tunisie centrale). Thèse de Doctorat ès Sciences, faculté des sciences de Tunis, p 437Google Scholar
  2. Ahmadi R (2006) Utilisation des marqueurs morphologiques, sédimentologiques et microstructuraux pour la validation des modèles cinématiques de plissement: Application à l’atlas méridionale tunisien. Thèse de Doctorat. Université de Nantes, p 215Google Scholar
  3. Ahmadi R, Ouali J, Mercier E, Mansy JL, Lanoë B, Launeau P, Rhekhiss F, Rafini S (2006) The geomorphologic response to hinge migration in the fault-related folds in the Southern Tunisian Atlas. J Struct Geol 28:721–728CrossRefGoogle Scholar
  4. Alyahyaoui S, Zouari H (2014) Synsedimentary folding process and transtensive tectonic during Late Miocene to Quaternary in northeastern Tunisia: case of Mateur-Menzel Bourguiba region. Arab J Geosci.  https://doi.org/10.1007/s12517-013-1111-2 Google Scholar
  5. Alyahyaoui S, Gabtni H, Zouari H, Mzali H (2013) New structural elements in Tellian foreland domain of the Northeastern Tunisia (Mateur plain) after integrating geological and geophysical data. Int J Geosci 4:1061–1072CrossRefGoogle Scholar
  6. Alyahyaoui S, Andolssi M, Zouari H, Charef A (2017) Modeling of subsurface structure in Utique basin with integration geological and geophysical data, Northastern Tunisia: investigations for natural resources. Model Earth Syst Environ.  https://doi.org/10.1007/s40808-017-0380-2 Google Scholar
  7. Amamria S, Bensalem MS, Ghanmi M, Zargouni F (2013) Condition of development of collapse structure in the southeren-central Atlassic Tunisia case study to Gafsa Basin. Arab J Geosci 6:2081–2087CrossRefGoogle Scholar
  8. Aridhi K, Ould Bagga MA, Abdeljaouad S, Zargouni F, Mercier E (2011) Lateral ramp-related folding evidence in the Tellian domain of Tunisia: Tectonic implications. CR Geosci 343:360–369CrossRefGoogle Scholar
  9. Aridhi S, Aridhi K, Ghanmi M, Zargouni F, Mercier E (2014) Structural context of meso-scale and cartographical duplex structure genesis in thrusting tectonics: role of tear faults. Zaghouan thrust belt. Case of Bir M’Cherga-Ain Asker area. Arab J Geosci 7:2499–2514CrossRefGoogle Scholar
  10. Bedir M (1995) Mécanismes géodynamiques des bassins associés aux couloirs de décrochements de la marge atlasique de la Tunisie. Séismo-stratigraphie, séismotectonique et implications pétrolières. Thèse d’Etat, université de Tunis, 407pGoogle Scholar
  11. Ben Ayed N (1986) Evolution tectonique de l’avant-pays de la chaîne alpine de Tunisie du début du Mésozoïque à l’actuel. Thèse ès sciences, Université Paris Sud, Centre d’OrsayGoogle Scholar
  12. Ben Brahim G, Ahmadi R, Brahim N, Turki F (2014) Neogene tectonics and fault-related folds in the Gulf of Hammamet area, Tunisian offshore. J Afr Earth Sc 97:78–86CrossRefGoogle Scholar
  13. Ben Chelbi M, Kamel S, Harrabi S, Rebaï N, Melki F, Meghraoui M, Zargouni F (2013) Tectonosedimentary evidence in the Tunisian Atlas, Bou Arada Trough: insights for the geodynamic evolution and AfricaEurasia plate convergence. J Geol Soc, London.  https://doi.org/10.1144/jgs2012-095 Google Scholar
  14. Ben Haj Ali M, Jedoui Y, Dali T, Ben Salem H, Memi L (1985) Carte géologique à l’échelle 1/500000 de la Tunisie. Ed. Service Géologique de TunisieGoogle Scholar
  15. Ben Romdhane M, Brahim N, Ouali J, Mercier E (2006) Tectonique quaternaire et plis de rampe dans le golfe d’Hammamet (offshoretunisien). Comptes Rendus Geosciences 338:341–348CrossRefGoogle Scholar
  16. Ben Salem H (1992) Contribution à la connaissance de la géologie de Cap Bon: Stratigraphie, Tectonique et Sédimentlogique. Thèse de 3ièmecycle en Sciences GéologiquesGoogle Scholar
  17. Bensalem MS, Ghanmi M, Zargouni F (2011) Genesis of folds in external zones: application of fault propagation fold model. Gafsa Basin example (southern central Tunisia). Arab J Geosci 4:229–237CrossRefGoogle Scholar
  18. Bensalem MS, Bensalem MH, Amamria S, Ghanmi M, Zargouni F (2017) Modeling of the principal parameters controlling the evolution of deformation in Atlassic belts: case study of the southern central Tunisian Atlas. Model Earth Syst Environ 3:31.  https://doi.org/10.1007/s40808-017-0288-x CrossRefGoogle Scholar
  19. Bouaziz S, Barrier E, Soussi M, Turki MM, Zouari H (2002) Tectonic evolution of the northern African margin in Tunisia from Paleostress data and sedimentary record. Tectonophysics 357:227–253CrossRefGoogle Scholar
  20. Bouhlel (1982) Distribution de baryum et de strontium dans la province fluorée tunisienne. Application aux gites de Hammam Jedidi et de Hammam Zriba-Guebli. Thèse de 3ième cycle, Université Paul Sabatier IIIGoogle Scholar
  21. Brandes C, Tanner DC (2014) Fault-related folding: A review of kinematic models and their application. Earth-Sci Rev 138:352–370CrossRefGoogle Scholar
  22. Bujalka P, Johan Z, Krivy M, Rakus M, Vacek J (1971) Carte géologique de la Tunisie (Grombalia) à l’échelle 1/50,000. Edition Service Géologique TunisieGoogle Scholar
  23. Buxtorf A (1916) Prognosen und BefundebeimHauensteinbasis- und Grenchenbergtunnel und die Bedeutung der letzternfür die Geologie des Juragebirges. Abh. Naturforsch Ges Basel 27:181–205Google Scholar
  24. Cadell HM (1889) Experimental researches in mountain building. Trans R Soc Edinb 35:337–357CrossRefGoogle Scholar
  25. Chamberlin RT (1910) The Appalachian folds of central Pennsylvania. J Geol 18:228–251CrossRefGoogle Scholar
  26. Chester JS, Chester FM (1990) Fault-propagation folds above thrusts with constant dip. J Struct Geol 12:903–910CrossRefGoogle Scholar
  27. Chihi L (1995) Les fossés néogènes à quaternaires de la Tunisie et de la mer pélagienne: Etude structurale et leur signification dans le cadre géodynamique de la méditerranée centrale. Thèse de Doctorat d’Etat Université Tunis El Mannar IIGoogle Scholar
  28. Cloos H (1936) Einführung in die Geologie. Verlag von GebrüderBornträger, Berlin, p 503Google Scholar
  29. Dahlstrom CDA (1969) Balanced cross sections. J Earth Sci 6:743–757Google Scholar
  30. Epard JL, Groshong RH (1993) Excess area and depth to detachment. AAPG Bull 77:1291–1302Google Scholar
  31. Ezzine I, Jaffal M, Ben Youssef M, Zargouni F, Ghanmi M (2012) The thrust front in the Jebel Bou El Hanèche—Kalâat Khasba(Central-northern Tunisia). Integration of geological and geophysical data. Estudios Geológicos 68:165–177CrossRefGoogle Scholar
  32. Frizon de Lamotte D, Guézou JC, Averbuch O (1995) Distinguishing lateral folds in thrust systems; examples from Corbières (SW France) and Betic Cordilleras (SE Spain). J Struct Geol 17:223–245Google Scholar
  33. Frizon de Lamotte D, Saint BB, Bracène R, Mercier E (2000) The two main steps of the Atlas building and geodynamics of the western Mediterranean. Tectonics 19:740–761CrossRefGoogle Scholar
  34. Gharsalli J, Mzali H (2017) Hazard susceptibility related to clay shrinkage–swelling phenomena in north-eastern Tunisia (Grombalia area). Modeling Earth Systems and Environment.  https://doi.org/10.1007/s40808-017-0345-5
  35. Grando G, McClay K (2004) Structural evolution of the Frampton growth fold system, Atwater Valley-Southern Green Canyon area, deep water Gulf of Mexico. Mar Pet Geol 21:889–910CrossRefGoogle Scholar
  36. Hadj Sassi M, Zouari H, Jallouli C (2006) Contribution de la gravimétrie et de la sismique réflexion pour une nouvelle interprétation géodynamique des fossés d’effondrement en Tunisie: exemple du fossé de Grombalia. Comptes Rendus Géosci 338:751–756CrossRefGoogle Scholar
  37. Haller P (1983) Structure profonde du Sahel tunisien, interprétation géodynamique. Thèse 3e cycle, Besançon, p 163Google Scholar
  38. Hardy S, Connors CD (2006) Short note: a velocity description of shear fault-bend folding. J Struct Geol 28:536–543CrossRefGoogle Scholar
  39. Hardy S, Poblet J (1995) The velocity description of deformation. Paper 2: sediment geometries associated with fault-bend and fault-propagation folds. Mar Pet Geol 12:165–176CrossRefGoogle Scholar
  40. Hughes AN, Benesh NP, Shaw JH (2014) Factors that control the development of fault-bend versus fault-propagation folds: Insights from mechanical models based on the discrete element method (DEM). J Struct Geol 68:121–141CrossRefGoogle Scholar
  41. Johan Z, Krivy M (1969) Carte géologique de la Tunisie (Bouficha) à l’échelle 1/50 000. Edition. Serv. Géol. TunisieGoogle Scholar
  42. Kammoun F (1988) Le jurassique du sud-tunisien, témoin de la marge africaine de la Tethys: stratigraphie, sédimontologie et micropaleontology. Thèse de spécalité Univ. Paul Sabatier, ToulouseGoogle Scholar
  43. Latham JP (1985) A numerical investigation and geological discussion of the relationship between folding, kinking and faulting. J Struct Geol 7:237 – 29CrossRefGoogle Scholar
  44. Martin J, et Mercier E (1995) Héritage distensif et structuration chevauchante dans une chaîne de couverture: apport de l’équilibrage par modélisation géométrique dans le Juras nord-occidental. Bulletin de la Société Géologique de France 167:101–110Google Scholar
  45. Masrouhi A, Ghanmi M, Ben Slama MM, Ben Youssef M, Vila JM, Zargouni F (2008) New tectono-sedimentary evidence constraining the timing of the positive tectonic inversion and the Eocene Atlasic phase in northern Tunisia: Implication for the north African paleo-margin evolution. Comptes Rendus Géoscience 340:771–778CrossRefGoogle Scholar
  46. McClay KR (1992) Thrust tectonics terms. Chapman and Hall London, p 450Google Scholar
  47. Meddeb S (1986) Sédimentation et tectonique polyphasée dans les dômes d’Enfidha. Thèse de doctorat de 3ème cycleGoogle Scholar
  48. Melki F, Zouaghi T, Harrab S, Sainz AC, Bédir M, Zargouni F (2011) Structuring and evolution of Neogene transcurrent basins in the Tellian foreland domain, north-eastern Tunisia. J Geodyn 52:57–69CrossRefGoogle Scholar
  49. Mercier E (1995) Les plis de propagations de rampes: cinématique, modélisation et importance dans la tectogenèse. Habilitation à diriger les recherches, Univ. Cergy-PontoiseGoogle Scholar
  50. Mercier E, Outtani F, Frizon De Lamotte D (1997) Late stage evolution of fault propagation folds: principales and exemple. J Struct Geol 19:185–193CrossRefGoogle Scholar
  51. Morgan M, Grocott J (1993) The structural setting and evolution of the Zaghouan-Ressas structural belt in the Zaghouan area, Tunisian Atlas, Northern Tunisia. Actes des IIIème Journées de Geologie Tunisienne Appliquée à la Recherche des Hydrcarbures, Mémoire de l’ETAP, pp 193–209Google Scholar
  52. Mzali H (2010) Etude des déformations et évolution des paléocontraintes dans la région de Bouficha-Grombalia. Thèse de doctorat, Université Tunis Manar, p 164Google Scholar
  53. Mzali H, Zouari H (2006) Caractérisation géométrique et cinématique des structures liées aux phases compressives de l’Eocène au Quaternaire inférieur en Tunisie: exemple de la Tunisie nord-orientale. Comptes Rendus Géoscience 338:742–749CrossRefGoogle Scholar
  54. Mzali H, Zouari H (2012) Structural cutting of a region showing various compound tectonic deformations (example of Bouficha–Grombalia region). Arab J Geosci 5:1399–1409CrossRefGoogle Scholar
  55. Mzali H, Gabtni H, Zouari H, Hadj Sassi M, Gharsalli J (2007) Evidence of N120 shear corridors and associated tectonic structures in north eastern Tunisia after geological and geophysical data. Comptes Rendus Géoscience 339:358–365CrossRefGoogle Scholar
  56. Mzali H, Harbi A, Alyahyaoui S (2016) Geometry characterization and depth determination of deep water reservoirs: the case of the Jebel Sidi Abd Er Rahmane region (Cap Bon, northeastern Tunisia). Arab J Geosci 9:295.  https://doi.org/10.1007/s12517-016-2313-1 CrossRefGoogle Scholar
  57. Ouali J (2007) Importance du réseau réghmatique dans la tectogenèse de la Tunisie atlasique à travers l’étude de l’Axe Nord-Sud. Thèse de Doctorat ès Sciences, faculté des sciences de Tunis, p 399Google Scholar
  58. Outtani F, Addoum B, Mercier E, Frizon De Lamotte D, Andrieux J (1995) Geometry and kinematics of the south Atlas front, Algeria and Tunisia. Tectonophysics 249:233–248CrossRefGoogle Scholar
  59. Rettger RE (1935) Experiments on soft-rock deformation. AAPG Bull 19:271–292Google Scholar
  60. Rich JL (1934) Mechanics of low angle overthrust faulting as illustrated by the Comberland thrust block, Virginia, Kentucky and Tennessee. AAPG Bull 18:1584–1596Google Scholar
  61. Salvinin F, Storti F (2001) Three-dimensional architecture of growth strata associated to fault-bend, fault-propagation, and decollement anticlines in non-erosional environments. Sed Geol 146:57–73CrossRefGoogle Scholar
  62. Soussi M (2000) Le Jurassique de la Tunisie atlasique: Stratigraphie, Dynamique sédimentaire, Paléogéographie et Intérêt pétrolier. Thèse de Doctorat d’Etat és-sciences, Université Tunis ManarGoogle Scholar
  63. Suppe J (1983) Geometry and kinematics of fault-bend folding. Am J Sci 283:684–721CrossRefGoogle Scholar
  64. Suppe J (1985) Principles of structural geology. Englewood Cliffs, New Jersey, 537pGoogle Scholar
  65. Suppe J, Medwedeff DA (1990) Geometry and kinematics of fault-propagation folding. Eclogae geol Helv 83:223–241Google Scholar
  66. Trigui H, Ahmadi R, Ouali J, Khalfi C, Mercier E (2016) Evidence of fault-propagation folds in foreland basin: the case of Chemsi and Belkhir anticlines of southern Tunisian Atlas. Arab J Geosci 9:706.  https://doi.org/10.1007/s12517-016-2748-4 CrossRefGoogle Scholar
  67. Turki MM (1985) Polycinématique et contrôle sédimentaire associé sur la cicatrice Zaghouan-Nebhana. Thèse de doctorat d’état, Faculté des sciences de Tunis, p 262Google Scholar
  68. Turki MM, Deltei J, Trouillet R, Yaich C (1988) Les inversions tectoniques de la Tunisie centro-septentrionale. Bull Soc géol France 3:399–406Google Scholar
  69. Willis B (1894) The Mechanics of Appalachian Structure. Department of the Interior-US. Geological Survey, p 281Google Scholar
  70. Zargouni F, Abbes C (1987) Zonation structurale de la Tunisie. Rev Sc de la Terre 6:63–69Google Scholar
  71. Zouaghi T, Bedir M, Inoubli MH (2005) 2D Seismic interpretation of strike-slip faulting, salt tectonics, and Cretaceous unconformities, Atlas mountains, central Tunisia. J Afr Earth Sc 43:464–486CrossRefGoogle Scholar
  72. Zouaghi T, Bédir M, Melki F, Gabtni H, Gharsalli R, Bessioud A, Zargouni F (2011) Neogene sediment deformations and tectonic features of northeastern Tunisia: evidence for paleoseismicity. Arab J Geosci 4:1301–1314CrossRefGoogle Scholar
  73. Zouari H (1995) Evolution géodynamique de l’Atlas centro-méridional de la Tunisie: stratigraphie, analyses géométrique, cinématique et tectono-sédimentaire. Thèse de Doctorat ès Sciences, faculté des sciences de Tunis, p 277Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Rabeb Ouhibi
    • 1
  • Houcem Mzali
    • 2
  • Mohamed Ghanmi
    • 1
  • Fouad Zargouni
    • 1
  1. 1.Faculty of Sciences of TunisUniversity of Tunis ManarEl ManarTunisia
  2. 2.Georessources LaboratoryWater Researches and Technologies CenterSolimanTunisia

Personalised recommendations