Modeling Earth Systems and Environment

, Volume 4, Issue 1, pp 199–220 | Cite as

Exploring fire incidence in Portugal using generalized additive models for location, scale and shape (GAMLSS)

  • Ana C. L. Sá
  • Maria A. A. Turkman
  • José M. C. Pereira
Original Article
  • 42 Downloads

Abstract

Portuguese wildfires are responsible for large environmental, ecological and socio-economic impacts. This study explores the fire-environment relationships by modeling fire incidence (FI) against vegetation, precipitation and anthropogenic drivers. The mean, dispersion and asymmetry of the FI distribution were modelled on the predictors using the generalized additive models for location, scale and shape. Results show that increasing forests and shrublands increases FI and decreases its dispersion, highlighting high FI regions. Fire absence decreases with all the predictors except human influence, indicating its control on fire hazard. Rain-fed versus irrigated agriculture may have a dual role on FI, pointing the need to explore them separately when modeling FI drivers. Precipitation has a non-linear effect on FI distribution parameters. The role of forests on fire distribution asymmetry needs to be further explored. Modelling the previously unexplored drivers of dispersion and asymmetry of FI gives new insights into fire regime studies and fire-environmental relationships.

Keywords

Non-linear Precipitation Fire distribution parameters Fire asymmetry Fire dispersion Fire environmental drivers 

Notes

Acknowledgements

Ana Sá has a post-doctoral fellowship (FSRH/BPD/71810/2010) funded by the Portuguese Foundation for the Science and Technology (FCT). This study was developed in the Forest Research Centre, a Portuguese research unit also funded by the FCT (UID/AGR/00239/2013). We acknowledge Mikis Stasinopoulos for helping on the interpretation of some of the GAMLSS functions.

References

  1. Ager AA, Preisler HK, Arca B et al (2014) Wildfire risk estimation in the Mediterranean area. Environmetrics 25:384–396.  https://doi.org/10.1002/env.2269 CrossRefGoogle Scholar
  2. Akaike H (1974) A new look at the statistical model identification. Autom Control IEEE Trans 19:716–723CrossRefGoogle Scholar
  3. Ali MM, Woo J, Nadarajah S (2008) Generalized gamma variables with drought application. J Korean Stat Soc 37:37–45.  https://doi.org/10.1016/j.jkss.2007.09.002 CrossRefGoogle Scholar
  4. Archibald S, Roy DP, van Wilgen BW, Scholes RJ (2009) What limits fire? An examination of drivers of burnt area in Southern Africa. Glob Chang Biol 15:613–630CrossRefGoogle Scholar
  5. Barros AMG, Pereira JMC (2014) Wildfire selectivity for land cover type. Does size matter? PLoS One 9:e84760.  https://doi.org/10.1371/journal.pone.0084760 CrossRefGoogle Scholar
  6. Belzunce F, Mulero J, Ruíz JM, Suárez-Llorens A (2016) On conditional skewness with applications to environmental data. Environ Ecol Stat.  https://doi.org/10.1007/s10651-016-0350-2 Google Scholar
  7. Bistinas I, Oom D, Sá ACL et al (2013) Relationships between human population density and burned area at continental and global scales. PLoS One 8:e81188CrossRefGoogle Scholar
  8. Bossard M, Feranec J, Otahel J (2000) CORINE land cover technical guide: Addendum 2000. European Environment Agency Copenhagen Technical Report No. 40, Copenhagen, DenmarkGoogle Scholar
  9. Bowman DMJS., Balch JK, Artaxo P et al (2009) Fire in the Earth system. Science 324:481–484CrossRefGoogle Scholar
  10. Bradstock RA, Hammill KA, Collins L, Price O (2010) Effects of weather, fuel and terrain on fire severity in topographically diverse landscapes of south-eastern Australia. Landsc Ecol 25:607–619.  https://doi.org/10.1007/s10980-009-9443-8 CrossRefGoogle Scholar
  11. Breusch TS, Pagan AR (1979) A simple test for heteroscedasticity and random coefficient variation. Econom J Econom Soc 1287–1294Google Scholar
  12. Büttner G, Kosztra B (2007) CLC2006 technical guidelines. European Environment Agency, Technical ReportGoogle Scholar
  13. Buuren S van, Fredriks M (2001) Worm plot: a simple diagnostic device for modelling growth reference curves. Stat Med 20:1259–1277CrossRefGoogle Scholar
  14. Caetano M, Nunes V, Pereira M (2009) Land use and land cover map of continental Portugal for 2007 (COS2007): project presentation and technical specifications development. 3rd Workshop of the EARSeL Special Interest Group on Land Use/Land Cover. vol 1Google Scholar
  15. Catry FX, Rego FC, Bação FL, Moreira F (2009) Modeling and mapping wildfire ignition risk in Portugal. Int J Wildl Fire 18:921CrossRefGoogle Scholar
  16. Chuvieco E, Aguado I, Yebra M et al (2010) Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol Modell 221:46–58.  https://doi.org/10.1016/j.ecolmodel.2008.11.017 CrossRefGoogle Scholar
  17. Cox C, Chu H, Schneider MF, Muñoz A (2007) Parametric survival analysis and taxonomy of hazard functions for the generalized gamma distribution. Stat Med 26:4352–4374.  https://doi.org/10.1002/sim.2836 CrossRefGoogle Scholar
  18. De Pascoa MAR, Ortega EMM, Cordeiro GM (2011) The Kumaraswamy generalized gamma distribution with application in survival analysis. Stat Methodol 8:411–433.  https://doi.org/10.1016/j.stamet.2011.04.001 CrossRefGoogle Scholar
  19. Eilers PHC, Marx BD (1996) Flexible smoothing with B -splines and penalties. Stat Sci 11 (2):89–121CrossRefGoogle Scholar
  20. Fernandes PM, Loureiro C, Magalhaes M et al (2012) Fuel age, weather and burn probability in Portugal. Int J Wildl Fire 21:380–384CrossRefGoogle Scholar
  21. Fernandes PM, Loureiro C, Guiomar N et al (2014) The dynamics and drivers of fuel and fire in the Portuguese public forest. J Environ Manage 146:373–382CrossRefGoogle Scholar
  22. Finney MA, McHugh CW, Grenfell IC et al (2011) A simulation of probabilistic wildfire risk components for the continental United States. Stoch Environ Res Risk Assess 25:973–1000.  https://doi.org/10.1007/s00477-011-0462-z CrossRefGoogle Scholar
  23. Gallego FJ (2010) A population density grid of the European Union. Popul Environ 31:460–473.  https://doi.org/10.1007/s11111-010-0108-y CrossRefGoogle Scholar
  24. Garcia Galiano SG, Giraldo Osorio JD, Urrea Mallebrera MA et al (2011) Assessing drought hazard under non-stationary conditions on southeast of Spain. IAHS-AISH, Melbourne, Australia, pp 85–91Google Scholar
  25. Guo F, Wang G, Innes JL et al (2015) Gamma generalized linear model to investigate the effects of climate variables on the area burned by forest fire in northeast China. J For Res 26:545–555CrossRefGoogle Scholar
  26. Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Monogr Stat Appl Probab 1:352Google Scholar
  27. Hastie T, Tibshirani R, Friedman J et al (2009) The elements of statistical learning. Springer, BerlinCrossRefGoogle Scholar
  28. Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  29. Hudson IL (2010) Interdisciplinary approaches: towards new statistical methods for phenological studies. Clim Change 100:143–171.  https://doi.org/10.1007/s10584-010-9859-9 CrossRefGoogle Scholar
  30. ICNF (2013) IFN6—Áreas dos usos do solo e das espécies florestais de Portugal continental. Resultados preliminares. http://www.icnf.pt/portal/florestas/ifn/ifn6. Accessed 9th Nov 2017
  31. Katsanevakis S, Issaris Y, Poursanidis D, Thessalou-Legaki M (2010) Vulnerability of marine habitats to the invasive green alga Caulerpa racemosa var. cylindracea within a marine protected area. Mar Environ Res 70:210–218CrossRefGoogle Scholar
  32. Koutsias N, Martínez-Fernández J, Allgöwer B (2010) Do factors causing wildfires vary in space? Evidence from geographically weighted regression. GIScience Remote Sens 47:221–240CrossRefGoogle Scholar
  33. Koutsias N, Arianoutsou M, Kallimanis AS et al (2012) Where did the fires burn in Peloponnisos, Greece the summer of 2007? Evidence for a synergy of fuel and weather. Agric For Meteorol 156:41–53CrossRefGoogle Scholar
  34. Koutsias N, Xanthopoulos G, Founda D et al (2013) On the relationships between forest fires and weather conditions in Greece from long-term national observations (1894–2010). Int J Wildl Fire 22:493–507CrossRefGoogle Scholar
  35. Krawchuk MA, Moritz MA (2011) Constraints on global fire activity vary across a resource gradient. Ecology 92:121–132.  https://doi.org/10.1890/09-1843.1 CrossRefGoogle Scholar
  36. Krawchuk MA, Moritz MA, Parisien M-A, Van Dorn J, Hayhoe K, Chave J (2009) Global Pyrogeography: the Current and Future Distribution of Wildfire. PLoS ONE 4 (4):e5102CrossRefGoogle Scholar
  37. Littell JS, Mckenzie D, Peterson DL, Westerling AL (2009) Climate and wildfire area burned in western U.S. ecoprovinces, 1916–2003. Ecol Appl 19:1003–1021.  https://doi.org/10.1890/07-1183.1 CrossRefGoogle Scholar
  38. Loepfe L, Martinez-Vilalta J, Oliveres J et al (2010) Feedbacks between fuel reduction and landscape homogenisation determine fire regimes in three Mediterranean areas. For Ecol Manage 259:2366–2374CrossRefGoogle Scholar
  39. Marlier ME, DeFries RS, Voulgarakis A et al (2012) El Niño and health risks from landscape fire emissions in southeast Asia. Nat Clim Chang 3:131–136.  https://doi.org/10.1038/nclimate1658 CrossRefGoogle Scholar
  40. Martin TG, Wintle BA, Rhodes JR et al (2005) Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecol Lett 8:1235–1246CrossRefGoogle Scholar
  41. McCullagh P, Nelder JA (1989) Generalized linear models. CRC, Boca RatonCrossRefGoogle Scholar
  42. Moreira F, Rego FC, Ferreira PG (2001) Temporal (1958–1995) pattern of change in a cultural landscape of northwestern Portugal: implications for fire occurrence. Landsc Ecol 16:557–567CrossRefGoogle Scholar
  43. Moreira F, Vaz P, Catry F, Silva JS (2009) Regional variations in wildfire susceptibility of land-cover types in Portugal: implications for landscape management to minimize fire hazard. Int J Wildl Fire 18:563–574CrossRefGoogle Scholar
  44. Moreira F, Viedma O, Arianoutsou M et al (2011) Landscape–wildfire interactions in southern Europe: implications for landscape management. J Environ Manage 92:2389–2402CrossRefGoogle Scholar
  45. Nadarajah S, Gupta AK (2007) A generalized gamma distribution with application to drought data. Math Comput Simul 74:1–7.  https://doi.org/10.1016/j.matcom.2006.04.004 CrossRefGoogle Scholar
  46. Nunes AN (2012) Regional variability and driving forces behind forest fires in Portugal an overview of the last three decades (1980–2009). Appl Geogr 34:576–586CrossRefGoogle Scholar
  47. Nunes MCS, Vasconcelos MJ, Pereira JMC et al (2005) Land cover type and fire in Portugal: do fires burn land cover selectively? Landsc Ecol 20:661–673CrossRefGoogle Scholar
  48. Nunes AN, Lourenço L, Meira ACC (2016) Exploring spatial patterns and drivers of forest fires in Portugal (1980–2014). Sci Total Environ.  https://doi.org/10.1016/j.scitotenv.2016.03.121 Google Scholar
  49. Oliveira SLJ, Pereira JMC, Carreiras JMB (2012a) Fire frequency analysis in Portugal (1975–2005), using Landsat-based burnt area maps. Int J Wildl Fire 21:48–60.  https://doi.org/10.1071/WF10131 CrossRefGoogle Scholar
  50. Oliveira S, Oehler F, San-Miguel-Ayanz J et al (2012b) Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forest. For Ecol Manage 275:117–129CrossRefGoogle Scholar
  51. Oliveira S, Pereira JMC, San-Miguel-Ayanz J, Lourenço L (2014) Exploring the spatial patterns of fire density in Southern Europe using geographically weighted regression. Appl Geogr 51:143–157CrossRefGoogle Scholar
  52. Osorio JDG, Galiano SGG (2012) Non-stationary analysis of dry spells in monsoon season of Senegal River Basin using data from Regional Climate Models (RCMs). J Hydrol 450:82–92CrossRefGoogle Scholar
  53. Parente J, Pereira MG, Tonini M (2016) Space-time clustering analysis of wildfires: The influence of dataset characteristics, fire prevention policy decisions, weather and climate. Sci Total Environ 559:151–165.  https://doi.org/10.1016/j.scitotenv.2016.03.129 CrossRefGoogle Scholar
  54. Pausas JG (2004a) Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Clim Change 63:337–350CrossRefGoogle Scholar
  55. Pausas JG (2004b) Changes in Fire and Climate in the Eastern Iberian Peninsula (Mediterranean Basin). Clim Change 63:337–350.  https://doi.org/10.1023/B:CLIM.0000018508.94901.9c CrossRefGoogle Scholar
  56. Pausas JG, Ribeiro E (2013) The global fire–productivity relationship. Glob Ecol Biogeogr 22:728–736CrossRefGoogle Scholar
  57. Pechony O, Shindell DT (2009) Fire parameterization on a global scale. J Geophys Res 114:1–10CrossRefGoogle Scholar
  58. Pereira PS, Turkman KF (2011) Spatial point processes applied to the study of forest fires in Portugal. In: Spatial2 Conference: Spatial Data Methods for Environmental and Ecological Processes–2nd Edition. Foggia, Baia delle Zagare, ItalyGoogle Scholar
  59. Pereira MG, Malamud BD, Trigo RM, Alves PI (2011) The history and characteristics of the 1980–2005 Portuguese rural fire database. Nat Hazards Earth Syst Sci 11:3343–3358CrossRefGoogle Scholar
  60. Pereira MG, Calado TJ, DaCamara CC, Calheiros T (2013) Effects of regional climate change on rural fires in Portugal. Clim Res 57:187–200CrossRefGoogle Scholar
  61. R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  62. Rigby RA, Stasinopoulos DM (2005) Generalized additive models for location, scale and shape. J R Stat Soc Ser C (Applied Stat) 54:507–554CrossRefGoogle Scholar
  63. Rigby RA, Stasinopoulos DM (2009) A flexible regression approach using GAMLSS in R. London Metropolitan University, LondonGoogle Scholar
  64. Rigby B, Stasinopoulos M, Heller G, Voudouris V (2014) The distribution toolbox of GAMLSSGoogle Scholar
  65. Rodrigues M, de la Riva J, Fotheringham S (2014) Modeling the spatial variation of the explanatory factors of human-caused wildfires in Spain using geographically weighted logistic regression. Appl Geogr 48:52–63CrossRefGoogle Scholar
  66. Sá ACL, Pereira JMC, Vanconcelos MJP et al (2003) Assessing the feasibility of sub-pixel burned area mapping in miombo woodlands of northern Mozambique using MODIS imagery. Int J Remote Sens 24:1783–1796CrossRefGoogle Scholar
  67. Sá ACL, Pereira JMC, Charlton ME et al (2011) The pyrogeography of sub-Saharan Africa: a study of the spatial non-stationarity of fire-environment relationships using GWR. J Geogr Syst 13:227–248CrossRefGoogle Scholar
  68. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464CrossRefGoogle Scholar
  69. Serra L, Saez M, Juan P et al (2014) A spatio-temporal Poisson hurdle point process to model wildfires. Stoch Environ Res Risk Assess 28:1671–1684.  https://doi.org/10.1007/s00477-013-0823-x CrossRefGoogle Scholar
  70. Stasinopoulos DM, Rigby RA (2007) Generalized additive models for location scale and shape (GAMLSS) in R. J Stat Softw 23:1–46CrossRefGoogle Scholar
  71. Tedim F, Remelgado R, Borges C et al (2013) Exploring the occurrence of mega-fires in Portugal. For Ecol Manage 294:86–96CrossRefGoogle Scholar
  72. Thompson JR, Spies TA (2009) Vegetation and weather explain variation in crown damage within a large mixed-severity wildfire. For Ecol Manage 258:1684–1694.  https://doi.org/10.1016/j.foreco.2009.07.031 CrossRefGoogle Scholar
  73. Tong ENC, Mues C, Thomas L (2013) A zero-adjusted gamma model for mortgage loan loss given default. Int J Forecast 29:548–562CrossRefGoogle Scholar
  74. Tong ENC, Mues C, Brown I, Thomas LC (2016) Exposure at default models with and without the credit conversion factor. Eur J Oper Res 252:910–920.  https://doi.org/10.1016/j.ejor.2016.01.054 CrossRefGoogle Scholar
  75. Torres-Manso F, Fernandes P, Pinto R et al (2014) Regional livestock grazing, human demography and fire incidence in the Portuguese landscape. For Syst 23:15Google Scholar
  76. Tu W, Tu W (2006) Zero-inflated data. In: encyclopedia of environmetrics. Wiley, ChichesterGoogle Scholar
  77. Turco M, Bedia J, Di Liberto F et al (2016) Decreasing fires in Mediterranean Europe. PLoS One 11:e0150663.  https://doi.org/10.1371/journal.pone.0150663 CrossRefGoogle Scholar
  78. Van Ogtrop FF, Vervoort RW, Heller GZ et al (2011) Long-range forecasting of intermittent streamflow. Hydrol Earth Syst Sci 15:3343–3354CrossRefGoogle Scholar
  79. Villarini G, Smith JA, Serinaldi F et al (2009) Flood frequency analysis for nonstationary annual peak records in an urban drainage basin. Adv Water Resour 32:1255–1266CrossRefGoogle Scholar
  80. Villarini G, Smith JA, Napolitano F (2010) Nonstationary modeling of a long record of rainfall and temperature over Rome. Adv Water Resour 33:1256–1267CrossRefGoogle Scholar
  81. WCS WCS-, University C for IESIN-C-C (2005) Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Influence Index (HII) Dataset (IGHP)Google Scholar
  82. Wilks DS (1990) Maximum likelihood estimation for the gamma distribution using data containing zeros. J Clim 3:1495–1501CrossRefGoogle Scholar
  83. Xystrakis F, Kallimanis AS, Dimopoulos P et al (2014) Precipitation dominates fire occurrence in Greece (1900–2010): its dual role in fuel build-up and dryness. Nat Hazards Earth Syst Sci 14:21–32CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ana C. L. Sá
    • 1
  • Maria A. A. Turkman
    • 2
  • José M. C. Pereira
    • 1
  1. 1.Forest Research Centre, School of AgricultureUniversity of LisbonLisbonPortugal
  2. 2.Department of Statistics and Operational Research, Faculty of SciencesUniversity of LisbonLisbonPortugal

Personalised recommendations