Modeling Earth Systems and Environment

, Volume 3, Issue 4, pp 1245–1262 | Cite as

Cellular automata and Markov Chain (CA_Markov) model-based predictions of future land use and land cover scenarios (2015–2033) in Raya, northern Ethiopia

  • Eskinder Gidey
  • Oagile Dikinya
  • Reuben Sebego
  • Eagilwe Segosebe
  • Amanuel Zenebe
Original Article
  • 118 Downloads

Abstract

Little is known about the future land use and land cover (LULC) type in some parts of Ethiopia, but not in the study area. This study aims to predict and analyze the future scenarios of LULC (2015–2033) using cellular automata and Markov Chain model (CA_Markov) by taking into consideration the physical and socio-economic drivers of LULC dynamics. The historical LULC change data of 1984–1995, 1995–2015, and 1984–2015 were used as a baseline. Both transition rules and transition area matrix for the period 1984–1995, 1995–2015, and 1984–2015 were produced quantitatively using the Markov chain model. After that, the physical and socio-economic factors were standardized using fuzzy and then Multi-Criteria Evaluation (MCE) was used to produce the transition suitability image. The CA_Markov model was then applied as a standard contiguity filter of 5 × 5 to predict the 2033 LULC condition using the TerrSet Geospatial Modeling and Monitoring System software. The result indicated that forestland are predicted to increase by 108 sq km (44.5%), shrub/bush lands 710 sq km (20%), built-up area 286.2 sq km (48.3%), and grasslands 31 sq km (15%), respectively. However, significant reductions (losses) in a water body (Wb) 5.2 sq km (11.2%), croplands (Cl) 78.9 sq km (1.3%), barren lands (Bl) 800 sq km (27.4%), and floodplain area (Fp) 251.68 sq km (33.7%), respectively. Furthermore, the Pearson correlation result between the historical and predicted LULC type indicated that there are positive, strongly correlated, and are statistically significant relationships (r = 0.981, p = 0.000). The increase in forest land and reduction in barren and flood plain may benefit the study area. However, the decrease in the water body may contribute to the severity of drought in the area. This study may help to use as useful information to foster better decisions and improve policies in land use within the framework of sustainable land use planning system.

Keywords

CA_Markov LULC prediction Remote sensing GIS Raya Ethiopia 

Notes

Acknowledgements

This research was funded by Mekelle University under Grant number CRPO/ICS/PhD/001/09 and the Open Society Foundation–Africa Climate Change Adaptation Initiative (OSF–ACCAI). The lead author is thankful for the PhD scholarship given by the Intra-Africa-Transdisciplinary Training for Resource Efficiency and Climate Change Adaptation in Africa (TreccAfrica II) project. The authors would also like to thank the National Aeronautics and Space Administration (NASA), United States Geological Survey (USGS) for the provision of Landsat imagery.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Adhikari S, Southworth J (2012) Simulating forest cover changes of Bannerghatta National Park based on a CA-Markov model: a remote sensing approach. Remote Sens 4(10):3215–3243CrossRefGoogle Scholar
  2. Akin A, Aliffi S, Sunar F (2014) Spatio-temporal urban change analysis and the ecological threats concerning the third bridge in Istanbul City. Int Arch Photogramm Remote Sens Spat Inf Sci 40(7):9CrossRefGoogle Scholar
  3. Alimi TO, Fuller DO, Herrera SV, Arevalo-Herrera M, Quinones ML, Stoler JB, Beier JC (2016) A multi-criteria decision analysis approach to assessing malaria risk in northern South America. BMC Public Health 16(1):221CrossRefGoogle Scholar
  4. Al-sharif AA, Pradhan B (2014) Monitoring and predicting land use change in Tripoli Metropolitan City using an integrated Markov chain and cellular automata models in GIS. Arab J Geosci 7(10):4291–4301CrossRefGoogle Scholar
  5. Araya YH, Cabral P (2010) Analysis and modeling of urban land cover change in Setúbal and Sesimbra, Portugal. Remote Sens 2(6):1549–1563CrossRefGoogle Scholar
  6. Arsanjani JJ, Kainz W, Mousivand AJ (2011) Tracking dynamic land-use change using spatially explicit Markov Chain based on cellular automata: the case of Tehran. Int J Image Data Fusion 2(4):329–345CrossRefGoogle Scholar
  7. Ayenew T, GebreEgziabher M, Kebede S, Mamo S (2013) Integrated assessment of hydrogeology and water quality for groundwater-based irrigation development in the Raya Valley, northern Ethiopia. Water Int 38(4):480–492CrossRefGoogle Scholar
  8. Behera MUD, Borate SN, Panda SN, Behera PR, Roy PS (2012) Modelling and analyzing the watershed dynamics using cellular automata (CA)-Markov model—A geo-information based approach. J Earth Syst Sci 121(4):1011–1024CrossRefGoogle Scholar
  9. Bewket W, Abebe S (2013) Land-use and land-cover change and its environmental implications in a tropical highland watershed, Ethiopia. Int J Environ Stud 70(1):126–139CrossRefGoogle Scholar
  10. Coppedge BR, Engle DM, Fuhlendorf SD (2007) Markov models of land cover dynamics in a southern Great Plains grassland region. Landsc Ecol 22(9):1383–1393CrossRefGoogle Scholar
  11. Corgne S, Hubert-Moy L, Dezert J, Mercier G (2003) Land covers change prediction with a new theory of plausible and paradoxical reasoning. In: Proc. of Fusion, pp 8–11Google Scholar
  12. Eastman JR (2003) IDRISI Kilimanjaro: guide to GIS and image processing. Clark Labs, Clark University, Worcester, p 305Google Scholar
  13. Eastman JR (2012) Idrisi selva tutorial. Idrisi Prod Clark Labs–Clark Univ 45:51–63Google Scholar
  14. Eric K, John S, Aldrik B (2007) Modelling land-use change: progress and applications. Springer, DordrechtGoogle Scholar
  15. Eva HD, Brink A, Simonetti D (2006) Monitoring land cover dynamics in sub-Saharan Africa. Institute for Environmental and Sustainability, Tech. Rep. EUR, p 22498Google Scholar
  16. Falcucci A, Maiorano L, Ciucci P, Garton EO, Boitani L (2008) Land-cover change and the future of the Apennine brown bear: a perspective from the past. J Mammal 89(6):1502–1511CrossRefGoogle Scholar
  17. Fan F, Wang Y, Wang Z (2008) Temporal and spatial change detecting (1998–2003) and predicting of land use and land cover in Core corridor of Pearl River Delta (China) by using TM and ETM + images. Environ Monit Assess 137(1):127–147CrossRefGoogle Scholar
  18. Gashaw T, Tulu T, Argaw M, Worqlul AW (2017) Evaluation and prediction of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Environ Syst Res 6(1):17CrossRefGoogle Scholar
  19. Ghosh P, Mukhopadhyay A, Chanda A, Mondal P, Akhand A, Mukherjee S, Hazra S (2017) Application of cellular automata and Markov-chain model in geospatial environmental modeling—a review. Remote Sens Appl Soc Environ 5:64–77.  https://doi.org/10.1016/j.rsase.2017.01.005 Google Scholar
  20. Gidey E, Dikinya O, Sebego R, Segosebe E, Zenebe A (2017) Modeling the spatio-temporal dynamics and evolution of land use and land cover (1984–2015) using remote sensing and GIS in Raya, Northern Ethiopia. In: Modeling Earth Systems and Environment, pp 1–17Google Scholar
  21. Hadi SJ, Shafri HZ, Mahir MD (2014) Modelling LULC for the period 2010–2030 using GIS and remote sensing: a case study of Tikrit, Iraq. In: IOP conference series: earth and environmental science, vol 20, 1. IOP Publishing, p 012053Google Scholar
  22. Halmy MWA, Gessler PE, Hicke JA, Salem BB (2015) Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Appl Geogr 63:101–112CrossRefGoogle Scholar
  23. Hyandye C, Martz LW (2017) A Markovian and cellular automata land-use change predictive model of the Usangu Catchment. Int J Remote Sens 38(1):64–81CrossRefGoogle Scholar
  24. Iacono M, Levinson D, El-Geneidy A, Wasfi R (2012) A Markov chain model of land use change in the Twin Cities, 1958–2005. In: Proceeding of the 10th international symposium on spatial accuracy assessment in natural resources and environmental sciences, pp. 10–345Google Scholar
  25. Iacono M, Levinson D, El-Geneidy A, Wasfi R (2015) A Markov chain model of land use change. TeMA J Land Use Mobil Environ 8(3):263–276Google Scholar
  26. Ildoromi A, Safari Shad M (2017) Land use change prediction using a hybrid (CA_Markov) model. ECOPERSIA 5(1):1631–1640CrossRefGoogle Scholar
  27. Jansen LJ, Di Gregorio A (1998) The problems of current land cover classifications: development of a new approach. Land cover and land use information systems for European Union policy needs, 93. In: Proceedings of the seminar Luxembourg, pp 1–202Google Scholar
  28. Jiang H, Eastman JR (2000) Application of fuzzy measures in multi-criteria evaluation in GIS. Int J Geogr Inf Sci 14(2):173–184CrossRefGoogle Scholar
  29. Keshtkar H, Voigt W (2016) A spatiotemporal analysis of landscape change using an integrated Markov chain and cellular automata models. Model Earth Syst Environ 2(1):10CrossRefGoogle Scholar
  30. Khoi DD, Murayama Y (2010) Delineation of suitable cropland areas using a GIS based multi-criteria evaluation approach in the Tam Dao National Park Region, Vietnam. Sustainability 2(7):2024–2043CrossRefGoogle Scholar
  31. Kityuttachai K, Tripathi NK, Tipdecho T, Shrestha R (2013) CA-Markov analysis of constrained coastal urban growth modeling: Hua Hin seaside city, Thailand. Sustainability 5(4):1480–1500CrossRefGoogle Scholar
  32. Lambin EF (1997) Modelling and monitoring land-cover change processes in tropical regions. Prog Phys Geogr 21(3):375–393CrossRefGoogle Scholar
  33. Lambin EF, Turner BL, Geist HJ, Agbola SB, Angelsen A, Bruce JW, George P (2001) The causes of land-use and land-cover change: moving beyond the myths. Global Environ Change 11(4):261–269CrossRefGoogle Scholar
  34. Li SH, Jin BX, Wei XY, Jiang YY, Wang JL (2015) Using Ca-Markov model to model the spatiotemporal change of land use/cover in Fuxian Lake for decision support. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 2(4):163Google Scholar
  35. Lopez E, Bocco G, Mendoza M, Duhau E (2001) Predicting land-cover and land-use change in the urban fringe: a case in Morelia city, Mexico. Landsc Urban Plan 55(4):271–285CrossRefGoogle Scholar
  36. López-Marrero T, González-Toro A, Heartsill-Scalley T, Hermansen-Báez LA (2011) Multi-criteria evaluation and geographic information systems for land-use planning and decision making (Guide). USDA Forest Service, Southern Research Station, Gainesville, FLGoogle Scholar
  37. Luo G, Amuti T, Zhu L, Mambetov BT, Maisupova B, Zhang C (2015) Dynamics of landscape patterns in an inland river delta of Central Asia based on a cellular automata-Markov model. Reg Environ Change 15(2):277–289CrossRefGoogle Scholar
  38. Mandal UK (2014) Geo-information based spatio-temporal modeling of urban land use and land cover change in Butwal municipality, Nepal. Int Arch Photogramm Remote Sens Spat Inf Sci 40(8):809CrossRefGoogle Scholar
  39. Mas JF, Paegelow M, De Jong B, Masera O, Guerrero G, Follador M, Garcia T (2007) Modelling tropical deforestation: a comparison of approaches. In: 32rd symposium on remote sensing of environment, p 3Google Scholar
  40. Mas JF, Kolb M, Paegelow M, Olmedo M. T. C., Houet T (2014) Inductive pattern-based land use/cover change models: a comparison of four software packages. Environ Modell Softw 51:94–111CrossRefGoogle Scholar
  41. Memarian H, Balasundram SK, Talib JB, Sung CTB, Sood AM, Abbaspour K (2012) Validation of CA-Markov for simulation of land use and cover change in the Langat Basin, Malaysia. J Geogr Inf Syst 4(6):542–554Google Scholar
  42. Mishra VN, Rai PK, Mohan K (2014) Prediction of land use changes based on land change modeler (LCM) using remote sensing: a case study of Muzaffarpur (Bihar), India. J Geogr Inst “Jovan Cvijic” SASA 64(1):111–127CrossRefGoogle Scholar
  43. Mondal MS, Sharma N, Garg PK, Kappas M (2015) Statistical independence test and validation of CA Markov land use land cover (LULC) prediction results. Egyptian J Remote Sens Space Sci 19(2):259–272CrossRefGoogle Scholar
  44. Moser G, Serpico SB, Benediktsson JA (2013) Land-cover mapping by Markov modeling of spatial-contextual information in very-high-resolution remote sensing images. Proc IEEE 101(3):631–651CrossRefGoogle Scholar
  45. Mubea KW, Ngigi TG, Mundia CN (2011) Assessing application of Markov chain analysis in predicting land cover change: a case study of Nakuru Municipality. J Agric Sci Technol 12(2):1–19Google Scholar
  46. Omar NQ, Sanusi SAM, Hussin WMW, Samat N, Mohammed KS (2014) Markov-CA model using analytical hierarchy process and multiregression technique. In: IOP conference series: earth and environmental science, vol 20, no 1. IOP Publishing, p 012008.  https://doi.org/10.1088/1755-1315/20/1/012008
  47. Owusu S, Mul ML, Ghansah B, Osei-Owusu PK, Awotwe-Pratt V, Kadyampakeni D (2017) Assessing land suitability for aquifer storage and recharge in northern Ghana using remote sensing and GIS multi-criteria decision analysis technique. Model Earth Syst Environ.  https://doi.org/10.1007/s40808-017-0360-6 Google Scholar
  48. Paegelow M, Camacho Olmedo MT, Mas JF, Houet T (2014) Benchmarking of LULC modelling tools by various validation techniques and error analysis. Cybergeo Eur J Geogr.  https://doi.org/10.4000/cybergeo.26610, http://cybergeo.revues.org/26610
  49. Parsa VA, Yavari A, Nejadi A (2016) Spatio-temporal analysis of land use/land cover pattern changes in Arasbaran Biosphere Reserve: Iran. Model Earth Syst Environ 4(2):1–13Google Scholar
  50. Pontius GR, Malanson J (2005) Comparison of the structure and accuracy of two land change models. Int J Geogr Inf Sci 19(2):243–265CrossRefGoogle Scholar
  51. Pontius RG, Schneider LC (2001) Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agric Ecosyst Environ 85(1):239–248CrossRefGoogle Scholar
  52. Poska A, Sepp E, Veski S, Koppel K (2008) Using quantitative pollen-based land-cover estimations and a spatial CA_Markov model to reconstruct the development of cultural landscape at Rouge, South Estonia. Veg Hist Archaeobotany 17(5):527–541CrossRefGoogle Scholar
  53. Regmi RR, Saha SK, Balla MK (2014) Geospatial analysis of land use land cover change modeling at Phewa Lake Watershed of Nepal by using cellular automata Markov model. Int J Curr Eng Technol 4:2617–2627Google Scholar
  54. Rendana M, Rahim SA, Wan Mohd RI, Lihan T, Rahman ZA (2015) CA_Markov for predicting land use changes in tropical catchment area: a case study in Cameron Highland, Malaysia. J Appl Sci 15(4):689–695CrossRefGoogle Scholar
  55. Rocha J, Ferreira JC, Simoes J, Tenedório JA (2007) Modelling coastal and land use evolution patterns through neural network and cellular automata integration. J Coastal Res 50:827–831Google Scholar
  56. Roy HG, Fox DM, Emsellem K (2014) Predicting land cover change in a Mediterranean catchment at different time scales. In: International conference on computational science and its applications. Springer, Cham. pp 315–330Google Scholar
  57. Sang L, Zhang C, Yang J, Zhu D, Yun W (2011) Simulation of land use spatial pattern of towns and villages based on CA-Markov model. Math Comput Modell 54(3):938–943CrossRefGoogle Scholar
  58. Sayemuzzaman M, Jha M (2014) Modeling of future land cover land use change in North Carolina using Markov chain and cellular automata model. Am J Eng Appl Sci 7(3):295CrossRefGoogle Scholar
  59. Serneels S, Lambin EF (2001) Proximate causes of land-use change in Narok District, Kenya: a spatial statistical model. Agric Ecosyst Environ 85(1):65–81CrossRefGoogle Scholar
  60. Shooshtari SJ, Gholamalifard M (2015) Scenario-based land cover change modeling and its implications for landscape pattern analysis in the Neka Watershed, Iran. Remote Sens Appl Soc Environ 1:1–19Google Scholar
  61. Singh SK, Mustak S, Srivastava PK, Szabó S, Islam T (2015) Predicting spatial and decadal LULC changes through cellular automata Markov chain models using earth observation datasets and geo-information. Environ Process 1(2):61–78CrossRefGoogle Scholar
  62. Sohl TL, Sleeter BM (2012) Land-use and land-cover scenarios and spatial modeling at the regional scale (No. 2012–3091). US Geological SurveyGoogle Scholar
  63. Subedi P, Subedi K, Thapa B (2013) Application of a hybrid cellular automaton-Markov (CA_Markov) Model in land-use change prediction: a case study of saddle creek drainage Basin, Florida. Appl Ecol Environ Sci 1(6):126–132Google Scholar
  64. Surabuddin Mondal M, Sharma N, Kappas M, Garg PK (2013) Modeling of spatio-temporal dynamics of land use and land cover in a part of Brahmaputra river basin using geoinformatic techniques. Geocarto Int 28(7):632–656CrossRefGoogle Scholar
  65. Veldkamp A, Lambin EF (2001) Predicting land-use change. Agric Ecosyst Environ 85:1–6CrossRefGoogle Scholar
  66. Verburg PH, Schot PP, Dijst MJ, Veldkamp A (2004) Land use change modelling: current practice and research priorities. GeoJournal 61(4):309–324CrossRefGoogle Scholar
  67. Verburg PH, Kok K, Pontius RG Jr, Veldkamp A (2006) Modeling land-use and land-cover change. In: Land-use and land-cover change. Springer, Berlin, pp 117–135CrossRefGoogle Scholar
  68. Wang R, Murayama Y (2017) Change of Land Use/cover in Tianjin city based on the Markov and cellular automata models. ISPRS Int J GeoInform 6(5):150CrossRefGoogle Scholar
  69. Wang S, Zhang Z, Wang X (2014) Land use change and prediction in the Baimahe Basin using GIS and CA_Markov model. In: IOP conference series: earth and environmental science, vol 17, p 012074.  https://doi.org/10.1088/1755-1315/17/1/012074
  70. Weng Q (2002) Land use change analysis in the Zhujiang delta of China using satellite remote sensing, GIS and stochastic modelling. J Environ Manag 64(3):273–284CrossRefGoogle Scholar
  71. Woodcock CE, Strahler AH, Franklin J (1983) Remote sensing for land management and planning. Environ Manag 7(3):223–237CrossRefGoogle Scholar
  72. Wu Q, Li HQ, Wang RS, Paulussen J, He Y, Wang M, Wang Z (2006) Monitoring and predicting land use change in Beijing using remote sensing and GIS. Landsc Urban Plan 78(4):322–333CrossRefGoogle Scholar
  73. Yang X, Zheng XQ, Chen R (2014) A land use change model: Integrating landscape pattern indexes and Markov-CA. Ecol Modell 283:1–7CrossRefGoogle Scholar
  74. Yang Y, Zhang S, Yang J, Xing X, Wang D (2015) Using a cellular automata–Markov model to reconstruct spatial land-use patterns in Zhenlai County. Northeast China Energ 8(5):3882–3902Google Scholar
  75. Ye B, Bai Z (2008) Simulating land use/cover changes of Nenjiang County based on CA-Markov model. In: Computer and computing technologies in agriculture, vol I. pp 321–329Google Scholar
  76. Yulianto F, Prasasti I, Pasaribu JM, Fitriana HL, Haryani NS, Sofan P (2016) The dynamics of land use/land cover change modeling and their implication for the flood damage assessment in the Tondano watershed, North Sulawesi, Indonesia. Model Earth Syst Environ 2(1):47CrossRefGoogle Scholar
  77. Zhilong Z, Xue W, Yili Z, Jungang G (2017) Assessment of changes in the value of ecosystem services in the Koshi River Basin, central high Himalayas based on land cover changes and the CA–Markov model. J Resour Ecol 8(1):67–76CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Eskinder Gidey
    • 1
    • 2
    • 3
  • Oagile Dikinya
    • 1
  • Reuben Sebego
    • 1
  • Eagilwe Segosebe
    • 1
  • Amanuel Zenebe
    • 2
    • 3
  1. 1.Department of Environmental ScienceUniversity of BotswanaGaboroneBotswana
  2. 2.Land Resource Management and Environmental ProtectionMekelle UniversityMekelleEthiopia
  3. 3.Institute of Climate and SocietyMekelle UniversityMekelleEthiopia

Personalised recommendations