Advertisement

Modeling Earth Systems and Environment

, Volume 3, Issue 4, pp 1675–1689 | Cite as

Drought forecasting using data-driven methods and an evolutionary algorithm

  • Seyed-Mohammad Hosseini-Moghari
  • Shahab Araghinejad
  • Ali Azarnivand
Original Article

Abstract

The present study focuses on quantitative (exact) and qualitative (classifying) drought forecasting in Gorganrood, Iran, based on monthly time-series of standard precipitation index (SPI) with 1–6 months lead-times. In so doing, recursive multi-layer perceptron (RMLP) and recursive support vector regression (RSVR) were optimized via an imperialist competitive algorithm (ICA). A traditional approach, autoregressive integrated moving average (ARIMA), has also been applied in this case. In quantitative forecasting, ICA-RMLP and ICA-RSVR models outperformed ARIMA ones according to three performance criteria namely, correlation coefficient (R), root mean square error (RMSE), and mean absolute error (MAE). For example, in SPI 24 and one month lead time forecasting; R, RMSE, and, MSE values for ARIMA model equaled to 0.90, 0.484, and 0.322 while, for ICA-RMLP equaled to 0.967, 0.277, and 0.188, respectively. In contrast, the criteria for ICA-RSVR were evaluated 0.969, 0.278, and 0.186, respectively. Increases in lead-times decreased the forecasting accuracy for both qualitative and quantitative forecasting. However, increases in SPI scales provided more accurate results. Whereas, in the quantitative forecasting, model could provide appropriate forecasts for all scales of SPI. According to the performance of the proposed framework, it would be practical for developing a drought warning system.

Keywords

Drought forecasting Evolutionary algorithm Multi-layer perceptron Standard precipitation index Support vector regression 

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723CrossRefGoogle Scholar
  2. Almedeij J (2016) Long-term periodic drought modeling. Stochastic Environ Res Risk Assess 30(3):901–910CrossRefGoogle Scholar
  3. Araghinejad S (2013) Data-driven modeling: using MATLAB® in water resources and environmental engineering. vol 67. Springer Science & Business Media, BerlinGoogle Scholar
  4. Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In 2007 IEEE Congress on Evolutionary Computation, 4661–4667Google Scholar
  5. Azarnivand A, Banihabib ME (2016) A multi-level strategic group decision making for understanding and analysis of sustainable watershed planning in response to environmental perplexities. Group Decis Negot. doi: 10.1007/s10726-016-9484-8 Google Scholar
  6. Bacanli UG, Firat M, Dikbas F (2009) Adaptive neuro-fuzzy inference system for drought forecasting. Stoch Environ Res Risk Assess 23(8):1143–1154CrossRefGoogle Scholar
  7. Barua S, Ng AWM, Perera BJC (2012) Artificial neural network–based drought forecasting using a nonlinear aggregated drought index. J Hydrol Eng 17(12):1408–1413CrossRefGoogle Scholar
  8. Belayneh A, Adamowski J (2013) Drought forecasting using new machine learning methods/Prognozowanie suszy z wykorzystaniem automatycznych samouczących się metod. J Water Land Dev 18(9):3–12CrossRefGoogle Scholar
  9. Box GE, Jenkins GM, Reinsel GC, Ljung GM (2015) Time series analysis: forecasting and control. Wiley, HobokenGoogle Scholar
  10. Bozorg-Haddad O, Azarnivand A, Hosseini-Moghari SM, Loáiciga HA (2016a) Development of a comparative multiple criteria framework for ranking Pareto optimal solutions of a multiobjective reservoir operation problem. J Irrig Drain Eng 142(7):04016019CrossRefGoogle Scholar
  11. Bozorg-Haddad O, Azarnivand A, Hosseini-Moghari SM, Loáiciga HA (2016b) WASPAS application and evolutionary algorithm benchmarking in optimal reservoir optimization problems. J Water Resour Plann Manage 143(1):04016070CrossRefGoogle Scholar
  12. Cherkassky V, Ma Y (2004) Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw 17(1):113–126CrossRefGoogle Scholar
  13. Cheval S, Busuioc A, Dumitrescu A, Birsan MV (2014) Spatiotemporal variability of meteorological drought in Romania using the standardized precipitation index SPI. Clim Res 60(3):235–248CrossRefGoogle Scholar
  14. Chisadza B, Tumbare MJ, Nyabeze WR, Nhapi I (2015) Linkages between local knowledge drought forecasting indicators and scientific drought forecasting parameters in the Limpopo River Basin in Southern Africa. Int J Disaster Risk Reduct 12:226–233CrossRefGoogle Scholar
  15. Chitsaz N, Hosseini-Moghari SM (2017) Introduction of new datasets of drought indices based on multivariate methods in semi-arid regions. Hydrol Res. doi: 10.2166/nh.2017.254 Google Scholar
  16. Chitsaz N, Azarnivand A, Araghinejad S (2016) Pre-processing of data-driven river flow forecasting models by singular value decomposition (SVD) technique. Hydrol Sci J 61(12):2164–2178CrossRefGoogle Scholar
  17. Dastorani MT, Afkhami H (2011) Application of artificial neural networks on drought prediction in Yazd (Central Iran). Desert 16(1):39–48Google Scholar
  18. Durdu ÖF (2010) Application of linear stochastic models for drought forecasting in the Büyük Menderes river basin, western Turkey. Stoch Environ Res Risk Assess 24(8):1145–1162CrossRefGoogle Scholar
  19. Edwards DC (1997) Characteristics of 20th century drought in the United States at multiple time scales (No. afit-97-051). Air force inst of tech wright-patterson afb ohGoogle Scholar
  20. Eslamian S (ed) (2014) Handbook of engineering hydrology: modeling, climate change, and variability. CRC Press, Boca RatonCrossRefGoogle Scholar
  21. Gorgij AD, Kisi O, Moghaddam AA (2016) Groundwater budget forecasting, using hybrid wavelet-ANN-GP modelling: a case study of Azarshahr Plain, East Azerbaijan, Iran. Hydrol Res. doi: 10.2166/nh.2016.202 Google Scholar
  22. Guttman NB (1999) Accepting the Standardized Precipitation Index: a calculation algorithm. J Am Water Resour Assoc 35(2):311–322CrossRefGoogle Scholar
  23. Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366CrossRefGoogle Scholar
  24. Javan K, Lialestani MRFH, Nejadhossein M (2015) A comparison of ANN and HSPF models for runoff simulation in Gharehsoo River watershed, Iran. Model Earth Syst Environ 1(4):41CrossRefGoogle Scholar
  25. Jayanthi H, Husak GJ, Funk C, Magadzire T, Adoum A, Verdin JP (2014) A probabilistic approach to assess agricultural drought risk to maize in Southern Africa and millet in Western Sahel using satellite estimated rainfall. Int J Disaster Risk Reduct 10:490–502CrossRefGoogle Scholar
  26. Kan G, Yao C, Li Q, Li Z, Yu Z, Liu Z, Liang K (2015) Improving event-based rainfall-runoff simulation using an ensemble artificial neural network based hybrid data-driven model. Stoch Environ Res Risk Assess 29(5):1345–1370CrossRefGoogle Scholar
  27. Kisi O, Dailr AH, Cimen M, Shiri J (2012) Suspended sediment modeling using genetic programming and soft computing techniques. J Hydrol 450:48–58CrossRefGoogle Scholar
  28. McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th Conference on Applied Climatology, vol 17, no 22, American Meteorological Society, Boston, pp 179–183Google Scholar
  29. Mishra AK, Desai VR (2005) Drought forecasting using stochastic models. Stochastic. Environ Res Risk Assess 19(5):326–339CrossRefGoogle Scholar
  30. Mishra AK, Desai VR (2006) Drought forecasting using feed-forward recursive neural network. Ecol Model 198(1):127–138CrossRefGoogle Scholar
  31. Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391(1):202–216CrossRefGoogle Scholar
  32. Mishra AK, Singh VP (2011) Drought modeling—A review. J Hydrol 403(1):157–175CrossRefGoogle Scholar
  33. Mishra AK, Desai VR, Singh VP (2007) Drought forecasting using a hybrid stochastic and neural network model. J Hydrol Eng 12(6):626–638CrossRefGoogle Scholar
  34. Modarres R (2007) Streamflow drought time series forecasting. Stoch Environ Res Risk Assess 21(3):223–233CrossRefGoogle Scholar
  35. Morid S, Smakhtin V, Bagherzadeh K (2007) Drought forecasting using artificial neural networks and time series of drought indices. Int J Climatol 27(15):2103–2111CrossRefGoogle Scholar
  36. Pandey PK, Nyori T, Pandey V (2017) Estimation of reference evapotranspiration using data driven techniques under limited data conditions. Model Earth Syst Environ 1–13Google Scholar
  37. Pangapanga PI, Jumbe CB, Kanyanda S, Thangalimodzi L (2012) Unravelling strategic choices towards droughts and floods’ adaptation in Southern Malawi. Int J Disaster Risk Reduct 2:57–66CrossRefGoogle Scholar
  38. Partal T, Cigizoglu HK, Kahya E (2015) Daily precipitation predictions using three different wavelet neural network algorithms by meteorological data. Stoch Environ Res Risk Assess 29(5):1317–1329CrossRefGoogle Scholar
  39. Reed PM, Hadka D, Herman JD, Kasprzyk JR, Kollat JB (2013) Evolutionary multiobjective optimization in water resources: the past, present, and future. Adv Water Resour 51(1):438–456CrossRefGoogle Scholar
  40. Schwarz G (1978) Estimating the dimension of a model. Annal Stat 6(2):461–464CrossRefGoogle Scholar
  41. Shamshirband S, Amirmojahedi M, Gocić M, Akib S, Petković D, Piri J, Trajkovic S (2015) Estimation of reference evapotranspiration using neural networks and cuckoo search algorithm. J Irrig Drain Eng 142(2):04015044CrossRefGoogle Scholar
  42. Sharma N, Zakaullah M, Tiwari H, Kumar D (2015) Runoff and sediment yield modeling using ANN and support vector machines: a case study from Nepal watershed. Model Earth Syst Environ 1(3):23CrossRefGoogle Scholar
  43. Sudheer KP, Gosain AK, Ramasastri KS (2003) Estimating actual evapotranspiration from limited climatic data using neural computing technique. J Irrig Drain Eng 129(3):214–218CrossRefGoogle Scholar
  44. Taormina R, Chau KW (2015) Neural network river forecasting with multi-objective fully informed particle swarm optimization. J Hydroinformatics 17(1):99–113CrossRefGoogle Scholar
  45. Tay FE, Cao L 2001 Application of support vector machines in financial time series forecasting. Omega 29(4):309–317CrossRefGoogle Scholar
  46. Udmale PD, Ichikawa Y, Manandhar S, Ishidaira H, Kiem AS, Shaowei N, Panda SN (2015) How did the 2012 drought affect rural livelihoods in vulnerable areas? Empirical evidence from India. Int J Disaster Risk Reduct 13:454–469CrossRefGoogle Scholar
  47. Vapnik V (1995) The nature of statistical learning theory. Springer Verlag, New YorkCrossRefGoogle Scholar
  48. Wagh VM, Panaskar DB, Muley AA, Mukate SV, Lolage YP, Aamalawar ML (2016) Prediction of groundwater suitability for irrigation using artificial neural network model: a case study of Nanded tehsil, Maharashtra, India. Model Earth Syst Environ 2(4):196CrossRefGoogle Scholar
  49. Wilhite DA, Glantz MH (1985) Understanding: the drought phenomenon: the role of definitions. Water Int 10(3):111–120CrossRefGoogle Scholar
  50. Wilhite DA, Rosenberg NJ, Glantz MH (1986) Improving federal response to drought. J Climate Appl Meteorol 25(3):332–342CrossRefGoogle Scholar
  51. Wu CL, Chau KW, Li YS (2008) River stage prediction based on a distributed support vector regression. J Hydrol 358(1):96–111CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Seyed-Mohammad Hosseini-Moghari
    • 1
  • Shahab Araghinejad
    • 1
  • Ali Azarnivand
    • 1
  1. 1.Department of Irrigation & Reclamation Engineering, Faculty of Agricultural Engineering & Technology, College of Agriculture & Natural ResourcesUniversity of TehranKarajIran

Personalised recommendations