Advertisement

Modeling Earth Systems and Environment

, Volume 3, Issue 4, pp 1263–1272 | Cite as

Rainfall-runoff relationships in a semiarid rangeland watershed in central Mexico, based on the CN-NRCS approach

  • Miguel A. Velásquez-Valle
  • Ignacio Sánchez-Cohen
  • Richard H. Hawkins
  • Alfonso Serna-Pérez
  • Ramón Gutiérrez-Luna
  • Aurelio Pedroza-Sandoval
Original Article
  • 67 Downloads

Abstract

In the southern region of the State of Zacatecas, México, soil characteristics and cover as well as inadequate management practices have caused the high runoff’s coefficients and soil losses. This study was carried in a small (46.8 ha) and partially instrumented rangeland watershed. The Climate, management, physiographic, and hydrological data base for the La Cruz rangeland watershed were used to determining a watershed’s curve number (CN) value and after with this information parameterize the TR-55 Model with the objective to compute runoff as a function of rainfall depth and hydrological conditions (different CN values). Rainfall-runoff analyses of the La Cruz basin data show a Standard CN hydrological response and a CN value was compute close to 83 using the least-squares procedure. The Nash–Sutcliffe efficiency index (EI) is recorded at 0.65 when runoff simulations was use CN = 80 (improve rangeland watershed condition) and 0.43 when were using CN = 83 (traditional or poor rangeland management). A theorical approach between local stoking rates and hydrological conditions (CN values to good, fair and poor soil cover) was development in order to explain the watershed derioration caused by poor rangeland management practices (overgrazing) at this location.

Keywords

Rainfall-runoff relationship Curve number Runoff simulation Rangeland watershed 

References

  1. Arcement GJ, Schneider VR. (2004). Guide for selecting Manning’s roughness coefficients for natural channels and flood plains. Unites States Geological Survey Water–supply Paper 2339. USAGoogle Scholar
  2. Blackburn WH, Meeuwing RO, Skau CM (1974) A mobile infiltrometer for use on rangeland. J Range Manag 27: 322–323CrossRefGoogle Scholar
  3. Bonta JV, Shipitalo MJ (2013) Curve numbers for long-term no-till corn and agricultural practices with high watershed infiltration. J Soil Water Conserv 68:487–500CrossRefGoogle Scholar
  4. Chow VT, Mhidment DR, Mays LW (1988) Applied hydrology. Mc. Graw Hill. Co., NYGoogle Scholar
  5. Echavarría Ch.FG, de la Santos CJL, Gutiérrez RL, Medina GG (2015) Validación de una estrategia metodológica para la evaluación cualitativa de un pastizal mediano abierto del estado de Zacatecas. Rev Mex Cienc Pecu 6(2):171–191Google Scholar
  6. Echavarría Ch.FG, Medina GG, Rumayor RAF, Serna PA, Salinas GH, Bustamante WJG (2009). Diagnóstico de los recursos naturales para la planeación de la intervención tecnológica y el ordenamiento ecológico. Campo Experimental Zacatecas.INIFAP. CIRNOC. Libro Técnico No 10. Zacatecas. México. 171 págGoogle Scholar
  7. FAO-UNESCO (1990) Mapa mundial de suelos, leyenda revisada. Versión en español, preparada por la Sociedad Española de la Ciencia del Suelo. Roma, ItaliaGoogle Scholar
  8. French RH (1993) Hidráulica de Canales Abiertos. McGraw-Hill Interamericana SA, México, p 724Google Scholar
  9. García E (1988) Modificaciones al Sistema de clasificación climática de Köppen (para adaptarlo a las condiciones de la república mexicana). Offset Larios, México DF, pp 46–52Google Scholar
  10. Gutiérrez LR, Medina GG, Amador MDR (2007) Carga animal del pastizal mediano abierto en Zacatecas. Folleto informativo No 36. Campo Experimental Zacatecas. CIRNOC. INIFAP. MéxicoGoogle Scholar
  11. Gwinn WR (1964) Walnut Gulch supercritical measuring flume. Trans ASAE 7:197–199CrossRefGoogle Scholar
  12. Hawkins RH (1993) Asymptotic determination of runoff curve numbers from data. J Irrig Drain Eng ASCE 119:334–345CrossRefGoogle Scholar
  13. Hawkins RH, Ward TJ (1998) Site and cover effects on event runoff. Jornada experimental range, New Mexico. In: Potts DF (ed) Proceedings AWRA specialty conference rangeland management and water resources, Reno Nevada. Amer Water Res Assoc, Herndon, pp. 361–370Google Scholar
  14. Hawkins RH, Ward TJ, Woodward E, Van Mullem JA. (2010) Continuing evolution of rainfall-runoff and the curve number precedent. 2nd joint federal interagency conference. Las Vegas, 27 June–1 JulyGoogle Scholar
  15. Hernandez M,. M.Miller S, Goodrich DC, Goff B-F-, Kepner WG, Edmonds CM, Jones KB (2000) Modeling runoff response to land cover and rainfall spatial variability in semi-arid watersheds. J Environ Monit Assess 64:285–298CrossRefGoogle Scholar
  16. INE–SEMARNAT (2006) México, Tercera Comunicación Nacional ante la Convención Marco de las Naciones Unidas sobre Cambio Climático. Instituto Nacional de Ecología and Secretaría de Medio Ambiente y Recursos Naturales. MéxicoGoogle Scholar
  17. Jacobs JH, Srinivasan R (2005) Effects of curve number modification on runoff estimation using WSR-88D rainfall data in Texas watersheds. J Soil Water Cons 60(5):274–279Google Scholar
  18. Limerinos JT (1970) Determination of the manning coefficient from measured bed roughness in natural channels. Geological survey water supply paper 1898—B. Washington EUAGoogle Scholar
  19. Medina GG, Ruiz JAC (2004) Estadísticas climatológicas básicas del Estado de Zacatecas. (PERÍODO 1961–2003). Libro Técnico No. 3. Campo Experimental Zacatecas Centro de Investigación Regional Norte Centro. INIFAP. SAGARPAGoogle Scholar
  20. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, part I: a discussion of principles. J Hydrol 10:282–290CrossRefGoogle Scholar
  21. Pierson BF, Spaeth KE, Weltz MA. 1996. The use of models as rangeland management decision aids. 117–124. In: Pierson FB, Weltz MA, Spaeth KE (eds) Grazing hydrology issues: prespectives for the 21st century. Society for range management. Denver, CO., USAGoogle Scholar
  22. Ponce V, Hawkins RH (1996) Runoff curve number: has it reached maturity? J Hydrol Eng 1:11–19CrossRefGoogle Scholar
  23. Rietz PD, Hawkins RH (2000) Effects of land use on curve number. In: Proceedings “Watershed Management and Operations Management”. Amer. Soc. Civ. Eng., New York, pp. 1–11. doi: 10.1061/40499(2000)110
  24. Ruíz-Fernández RD, Valdez-Cepeda L, Pérez-Romero D, Rodríguez-Tenorio, Magallanes-Quintanar R (2007) Strategies for re-vegetation of degraded arid rangelands in Zacatecas. J Agri Biol 9:857–862Google Scholar
  25. Sánchez BC (1984) Effects of livestock grazing and exclusion on infiltration and sediments yields for different range sites on El Plateado Watershed. Zacatecas, México. Ph. D. Dissertation. New Mexico State University. Las Cruces, NM. USAGoogle Scholar
  26. Sánchez CI, Velásquez MV, Jasso RI, González BJL (2003) Caracterización de la retención potencial máxima de humedad en el suelo del método SCS-CN. Aplicación a una cuenca de México. vol XVIII, pp 111–117Google Scholar
  27. Sartori A, Hawkins RH, Genovez Abel M. 2011. Reference curve numbers and behavior for sugarcane on highly weathered tropical soils. J Irrig Drain Eng ASCE 137:705–711CrossRefGoogle Scholar
  28. SCS-USDA (Soil Conservation Service-US Department of Agriculture) (1972) SCS. National engineering handbook, Sect. 4, hydrology. chapter 10, estimation of direct runoff from storm rainfall. US Department of Agriculture, Soil Conservation Service, Washington, DC, pp. 10.1–10.24Google Scholar
  29. Serna PA, Velásquez MAV (1986) Relación precipitación—escurrimiento de una pequeña cuenca de uso pecuario. Informa Anual de Investigación. C. Experimental de los Cañones. CIFAP-ZACATECAS. INIFAP—SARH. Sin publicarGoogle Scholar
  30. Serna PA, Velásquez MAV (1988) Balance hídrico en una pequeña cuenca experimental de uso pecuario. Pág. 39–48. In: Memorias de la V Semana de Zonas Áridas. 26–28 Septiembre de 1988. URUZA – UACH. Bermejillo, Dgo. MéxicoGoogle Scholar
  31. Simanton JR, Hawkins RH, Mohseni-Saravi M, Renard KG (1996) Runoff curve number variation with drainage area, Walnut Gulch, Arizona. Trans ASAE 39:1391–1394CrossRefGoogle Scholar
  32. Smith RE, Chery DL Jr, Renard KG, Gwinn WR (1981) Supercritical flow flumes for measuring sediment-laden flow. U.S.D.A. Technical Bulletin 1655, p 72Google Scholar
  33. Sneller JA (1985) Computation of runoff curve numbers from rangelands from landsat data. Tech. Rep. HL-85-2. USDA-ARS. Hydro. Lab. Beltsville, Md. 50Google Scholar
  34. Sutjiningsih D, Soeryantono H, Anggraheni E (2015) Estimation of sediment yield in a small urban ungauged watershed on the Schaffernak approach at Sugutamo watershed, Ciliwung, West Java. Int J Technol 5:809–818CrossRefGoogle Scholar
  35. Swindel BF, Lassiter Ch.J, Reikerk H (1982) Effects of clear cutting and site preparation on water yield from slash pine forest. For Ecol Manag 4:101–113CrossRefGoogle Scholar
  36. Thomas DSG, Middleton NJ (1994) Desertification: exploding the myth. John Wiley, LondonGoogle Scholar
  37. USDA-NRCS-CED (US Department of Agriculture-Natural Resources Conservation Service-Conservation Engineering Division) (1986) Urban hydrology for small watersheds. Technical Release 55, 2nd edn. June 1986. Washington, DCGoogle Scholar
  38. Velásquez VMA (1991) El Plateado, un modelo hidrológico de simulación para cuencas de pastizales. Master of Science Thesis. Colegio de Postgraduados, Montecillo, Estado de MéxicoGoogle Scholar
  39. Velásquez VMA, Serna AP (1994) Caracterización hidrológica de una cuenca de pastizal con pastoreo continúo. TERRA 12:273–281Google Scholar
  40. Wang X, Harmel RD, Williams JR, Harman WL (2006) Evaluation of EPIC for assessing crop yield, runoff sediment and nutrient losses from watersheds with poultry litter fertilization. Trans ASABE 49 (1):47–59CrossRefGoogle Scholar
  41. Wood MK, Blackburn WH (1984) An evaluation of the hydrological soil groups as used in the SCS runoff method on rangelands. Water Resour Bull 20:379–389CrossRefGoogle Scholar
  42. Woodward DE, Van Mullem JA, Hawkins RH, Plummer A (2010) Curve number completion study. Consultant’s report to USDA. NRCS, BeltsvilleGoogle Scholar
  43. Zevenberg AT (1985) Runoff curve numbers from rangelands from landsat data. Tech. Rep. HL-85-1. USDA-ARS. Hydro. Lab, BeltsvilleGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Campo Experimental SaltilloCIRNE-INIFAPSaltilloMexico
  2. 2.CENID-RASPA INIFAPGómez PalacioMexico
  3. 3.(Emeritus) University of ArizonaTucsonUSA
  4. 4.Campo Experimental Zacatecas, CIRNOC-INIFAPCalera de Víctor RosalesMexico
  5. 5.Unidad Regional Universitaria de Zonas Áridas, UACHBermejilloMexico

Personalised recommendations