Performance and Limitations of Real-Time Hybrid Simulation with Nonlinear Computational Substructures

Abstract

Hybrid simulation (HS) and real-time HS (RTHS) are widely used experimental techniques to evaluate the seismic performance of structural components and full systems. The goal of this study is to investigate the performance and limitations of RTHS when the computational model involves complex and highly nonlinear behavior, mainly due to both stiffness and strength deterioration. To establish the case of deploying such heavily nonlinear models, a RTHS methodology is presented to study the effect of using braces for seismic retrofitting of older steel moment resisting frames (MRFs). The objective of this paper is two-fold. First, assess the performance and identify limitations of integration algorithms for RTHS with heavily nonlinear models. Second, demonstrate the feasibility of HS/RTHS testing for selecting the best seismic retrofitting strategies. A comprehensive analytical study of different MRFs models is presented to study the performance of different integration algorithms available in OpenSees. Selected MRF model is modified to conduct a series of nonlinear RTHS tests using a compact HS test setup at the University of Nevada, Rene. The performance of two implicit and explicit integration algorithms is assessed for RTHS, and the quality of HS results from RTHS and slow HS tests are compared. Moreover, a demonstration of how HS could be used for assessing best seismic retrofitting strategies based on realistic nonlinear models is presented.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

References

  1. 1.

    Thewalt CR, Mahin SA (1995) An unconditionally stable hybrid pseudodynamic algorithm. Earthq Eng Struct Dyn 24:723–731. https://doi.org/10.1002/eqe.4290240508

    Article  Google Scholar 

  2. 2.

    Chang SY (1997) Improved numerical dissipation for explicit methods in pseudodynamic tests. Earthq Eng Struct Dyn 26:917–929. https://doi.org/10.1002/(SICI)1096-9845(199709)26:9<917::AID-EQE685>3.0.CO;2-9

    Article  Google Scholar 

  3. 3.

    Chang S-Y (2002) Explicit Pseudodynamic algorithm with unconditional stability. J Eng Mech 128:935–947. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:9(935)

    Article  Google Scholar 

  4. 4.

    Kolay C, Ricles JM, Marullo TM, Mashvashmohammadi A, Sause R (2015) Implementation and application of the unconditionally stable explicit parametrically dissipative KR-alpha method for real-time hybrid simulation. Earthq Eng Struct Dyn 44:735–755. https://doi.org/10.1002/eqe.2484

    Article  Google Scholar 

  5. 5.

    Ahmadizadeh M, Mosqueda G (2008) Hybrid simulation with improved operator-splitting integration using experimental tangent stiffness matrix estimation. J Struct Eng 134:1829–1838. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:12(1829)

    Article  Google Scholar 

  6. 6.

    Sivaselvan, MV, Shao, X, Weinreber, S, Reinhorn, AM, Pitman, M: Real time dynamic hybrid testing using shake tables and force-based substructuring 40878, 1–10 (2006). doi:https://doi.org/10.1061/40878(202)8

  7. 7.

    Zhou MX, Wang JT, Jin F, Gui Y, Zhu F (2014) Real-time dynamic hybrid testing coupling finite element and shaking table. J Earthq Eng 18:637–653. https://doi.org/10.1080/13632469.2014.897276

    Article  Google Scholar 

  8. 8.

    Jinting, W, Liqiao, L, Fei, Z: Efficiency analysis of numerical integrations for finite element substructure in real-time hybrid simulation 17, 73–86 (2018). doi:https://doi.org/10.1007/s11803-018-0426-0

  9. 9.

    Chae Y, Kazemibidokhti K, Ricles JM (2013) Adaptive time series compansator for delay compensation of servo-hydraulic actuator systems for real-time hybrid simulation. Earthq Eng Struct Dyn 42:1697–1715. https://doi.org/10.1002/eqe.2294

    Article  Google Scholar 

  10. 10.

    Gunay S, Mosalam KM (2015) Enhancement of real-time hybrid simulation on a shaking table configuration with implementation of an advanced control method. Earthq Eng Struct Dyn 44:657–675. https://doi.org/10.1002/eqe.2477

    Article  Google Scholar 

  11. 11.

    Schellenberg, AH, Mahin, SA, Fenves, GL: Advanced implementation of hybrid simulation. PEER Report 2009/104. (2009)

  12. 12.

    Zhen, W, Guoshan, X, Qiang, L, Bin, W: An adaptive delay compensation method based on a discrete system model for real-time hybrid simulation. Smart Struct. And Systems. (2020)

  13. 13.

    Chen C, Ricles JM (2008) Development of direct integration algorithms for structural dynamics using discrete control theory. J Eng Mech 134:676–683. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:8(676)

    Article  Google Scholar 

  14. 14.

    Gui Y, Wang JT, Jin F, Chen C, Zhou MX (2014) Development of a family of explicit algorithms for structural dynamics with unconditional stability. Nonlinear Dyn 77:1157–1170. https://doi.org/10.1007/s11071-014-1368-3

    Article  Google Scholar 

  15. 15.

    Kolay, C, Ricles, JM: Development of a family of unconditionally stable explicit direct integration algorithms with controllable numerical energy dissipation. Earthq Eng Struct Dyn. 1361–1380 (2014). doi:https://doi.org/10.1002/eqe.2401

  16. 16.

    Bayer V, Dorka UE, Füllekrug U, Gschwilm J (2005) On real-time pseudo-dynamic sub-structure testing: algorithm, numerical and experimental results. Aerosp Sci Technol 9:223–232. https://doi.org/10.1016/j.ast.2005.01.009

    Article  Google Scholar 

  17. 17.

    Dorka, UE, Heiland, D: Fast online earthquake simulation utilizing a novel pc supported measurement and control concept. In: Structural dynamics: recent advances: proceedings of the 4th international conference. pp. 636–645 (1991)

  18. 18.

    Shing PB, Vannan MT, Cater E (1991) Implicit time integration for pseudodynamic tests. Earthq Eng Struct Dyn 20:551–576. https://doi.org/10.1002/eqe.4290200605

    Article  Google Scholar 

  19. 19.

    Thewalt, CR, Mahin, SA: Hybrid solution techniques for generalized pseudodynamic testing. 137 (1987)

  20. 20.

    Shing PB, Vannan MT (1991) Implicit time integration for pseudodynamic tests: convergence and energy dissipation. Earthq Eng Struct Dyn 20:809–819. https://doi.org/10.1002/eqe.4290200902

    Article  Google Scholar 

  21. 21.

    Bursi OS, Shing PB, Radakovic-Guzina Z (1994) Pseudodynamic testing of strain-softening systems with adaptive time steps. Earthq Eng Struct Dyn 23:745–760. https://doi.org/10.1002/eqe.4290230705

    Article  Google Scholar 

  22. 22.

    Nakashima M, Ishida M, Ando K (1990) Integration techniques for substructure Pseudo dynamic testing. J Struct Constr Eng AIJ 417:107–117

    Google Scholar 

  23. 23.

    Hughes TJR, Pister KS, Taylor RL (1979) Implicit-explicit finite elements in nonlinear transient analysis. Comput Methods Appl Mech Eng 17–18:159–182. https://doi.org/10.1016/0045-7825(79)90086-0

    Article  Google Scholar 

  24. 24.

    Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-a method. J Appl Mech 60:371–375. https://doi.org/10.1039/c4qo00187g

    CAS  Article  Google Scholar 

  25. 25.

    OpenSees. “Open System for Earthquake Engineering Simulation.” from http://opensees.berkeley.edu., (2008)

  26. 26.

    Bas, EE, MA Moustafa, G Pekcan: Compact hybrid simulation setup and system validation with application for braced frames seismic testing journal of earthquake engineering (2020). DOI: https://doi.org/10.1080/13632469.2020.1733138

  27. 27.

    Mosqueda G, Ahmadizadeh M (2011) Iterative implicit integration procedure for hybrid simulation of large nonlinear structures. Earthq Eng Struct Dyn 40:945–960. https://doi.org/10.1002/eqe.1066

    Article  Google Scholar 

  28. 28.

    Del Carpio Ramos M, Hashemi MJ, Mosqueda G (2017) Evaluation of integration methods for hybrid simulation of complex structural systems through collapse. Earthq Eng Eng Vib 16:745–759. https://doi.org/10.1007/s11803-017-0411-z

    Article  Google Scholar 

  29. 29.

    Del Carpio Ramos M, Mosqueda G, Javad Hashemi M (2016) Large-scale hybrid simulation of a steel moment frame building structure through collapse. J Struct Eng (United States) 142(1–13). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001328

  30. 30.

    Hashemi MJ, Mosqueda G, Lignos DG, Medina RA, Miranda E (2016) Assessment of numerical and experimental errors in hybrid simulation of framed structural systems through collapse. J Earthq Eng 20:885–909. https://doi.org/10.1080/13632469.2015.1110066

    Article  Google Scholar 

  31. 31.

    Wang T, Mosqueda G, Jacobsen A, Cortes-Delgado M (2012) Performance evaluation of a distributed hybrid test framework to reproduce the collapse behavior of a structure. Earthq Eng Struct Dyn 41:295–313. https://doi.org/10.1002/eqe.1130

    Article  Google Scholar 

  32. 32.

    Kazemibidokhti, K: Large-scale real-time hybrid simulation of reinforced concrete structures, (2016)

  33. 33.

    Dong, B: Large-scale experimental, numerical, and design studies of steel MRF structures with nonlinear viscous dampers under seismic loading, (2016)

  34. 34.

    Kolay C, Ricles JM, Marullo TM, Al-Subaihawi S, Quiel SE (2018) Computational challenges in real-time hybrid simulation of tall buildings under multiple natural hazards. Key Eng Mater 763:566–575. https://doi.org/10.4028/www.scientific.net/kem.763.566

    Article  Google Scholar 

  35. 35.

    Di Sarno, L, Elnashai, AS: Seismic retrofitting of steel and composite building structures. (2002)

  36. 36.

    Deierlein GG, Reinhorn AM, Willford MR (2010) Nonlinear structural analysis for seismic design. Rep. NIST GCR 10:917–915

    Google Scholar 

  37. 37.

    Ibarra LF, Medina RA, Krawinkler H (2005) Hysteretic models that incorporate strength and stiffness deterioration. Earthq Eng Struct Dyn 34:1489–1511. https://doi.org/10.1002/eqe.495

    Article  Google Scholar 

  38. 38.

    Ibarra, LF, Krawinkler, H: Global collapse of frame structures under seismic excitations. (2005)

  39. 39.

    Lignos, DG, Krawinkler, H: Sidesway Collapse of Deteriorating Structural Systems (2008). doi:https://doi.org/10.1017/CBO9781107415324.004

  40. 40.

    Lignos DG, Krawinkler H (2011) Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading. J Struct Eng 137:1291–1302. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000376

    Article  Google Scholar 

  41. 41.

    Lignos, D : Backbone Curve Plotter For Steel Components, http://dimitrios-lignos.research.mcgill.ca/databases/component/

  42. 42.

    OpenSeesWiki, http://opensees.berkeley.edu/wiki/

  43. 43.

    Scott MH, Fenves GL (2006) Plastic hinge integration methods for force-based beam-column elements. J Struct Eng 132:244–252. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:2(244)

    Article  Google Scholar 

  44. 44.

    Scott MH, Ryan KL (2013) Moment-rotation behavior of force-based plastic hinge elements. Earthquake Spectra 29:597–607. https://doi.org/10.1193/1.4000136

    Article  Google Scholar 

  45. 45.

    Kolay, C: Parametrically dissipative explicit direct integration algorithms for computational and experimental structural dynamics, (2016)

  46. 46.

    Carrion JE, Spencer BF Jr, Phillips BM (2009) Real-time hybrid simulation for structural control performance assessment. Earthq Eng Eng Vib 8:481–492. https://doi.org/10.1007/s11803-009-9122-4

    Article  Google Scholar 

  47. 47.

    Newmark NM (1959) A method for computation of structural dynamics. J Eng Mech Devision 85:67–94

    Google Scholar 

  48. 48.

    Hilber HM, Hughes TJR, Taylor RL (1977) Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq Eng Struct Dyn 5:283–292. https://doi.org/10.1002/eqe.4290050306

    Article  Google Scholar 

  49. 49.

    Hilber HM, Hughes TJR (1978) Collocation, dissipation and [overshoot] for time integration schemes in structural dynamics. Earthq Eng Struct Dyn 6:99–117. https://doi.org/10.1002/eqe.4290060111

    Article  Google Scholar 

  50. 50.

    Shing, P-SB, Mahin, SA: Experimental Error Propagation in Pseudody. Report No. UCB/EERC-83/12. (1983)

  51. 51.

    Nakashima, M, Ishii, K, Kamagata, S, Tsutsumi, H, Ando, K: Feasibility of pseudo dynamic test using substructuring techniques. In: Proceedings of the Ninth World Conference on Earthquake Engineering. pp. IV-47-IV–52 (1988)

  52. 52.

    Combescure D, Pegon P (1997) α-Operator Splitting Time Integration Technique for Pseudodynamic Testing Error Propagation Analysis. Soil Dyn Earthq Eng 16:427–443. https://doi.org/10.1016/S0267-7261(97)00017-1

    Article  Google Scholar 

  53. 53.

    Scott, MH, Fenves, GL: A krylov subspace accelerated newton algorithm. In: Proceedings of the structures congress and exposition. pp. 45–55 (2003)

  54. 54.

    Schellenberg, AH, Kim, HK, Mahin, S.A.: OpenFresco. Universtiy of California, Berkeley., (2009)

  55. 55.

    MTS. “Civil engineering testing solutions.” from http://www.mts.com. (2014)

  56. 56.

    Mathworks. “Simulink and xPC Target,” (2017)

  57. 57.

    Serebanha A, Schelleberg AH, Schoettler MJ, Mosqueda G, Mahin SA (2019) Real-Time Hybrid Simulation of Seismically Isolated Structures with Full-Scale Bearings and Large Compuational Models. Comput Model Eng Sci 120(3):693–717. https://doi.org/10.32604/cmes.2019.04846

    Article  Google Scholar 

  58. 58.

    Kumar S, Itoh Y, Saizuka K, Usami T (1997) Pseudodynamic testing of scaled models. J Struct Eng 123(4):524–526. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:4(524)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. A. Moustafa.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bas, E.E., Moustafa, M.A. Performance and Limitations of Real-Time Hybrid Simulation with Nonlinear Computational Substructures. Exp Tech (2020). https://doi.org/10.1007/s40799-020-00385-6

Download citation

Keywords

  • Real-time hybrid simulation
  • Nonlinear analysis
  • Seismic retrofitting
  • Steel frames