Skip to main content
Log in

Comparison of Different Techniques for Characterizing the Diesel Injector Internal Dimensions

  • Published:
Experimental Techniques Aims and scope Submit manuscript

Abstract

The geometry of certain parts of diesel injectors is key to the injection, atomization and fuel-air mixing phenomena. Small variations on the geometrical parameters may have a strong influence on the aforementioned processes. Thus, OEMs need to assess their manufacturing tolerances, whereas researchers in the field (both experimentalists and modelers) rely on the accuracy of a certain metrology technique for their studies. In the current paper, an investigation of the capability of different experimental techniques to determine the geometry of a modern diesel fuel injector has been performed. For this purpose, three main elements of the injector have been evaluated: the control volume inlet and outlet orifices, together with the nozzle orifices. While the direct observation of the samples through an optical microscope is only possible for the simplest pieces, both Computed Tomography Scanning and the visualization of silicone molds technique have proven their ability to characterize the most complex internal shapes corresponding to the internal injector elements. Indeed, results indicate that the differences observed among these methodologies for the determination of the control volume inlet orifice diameter and the nozzle orifice dimensions are smaller than the uncertainties related to the experimental techniques, showing that they are both equally accurate. This implies that the choice of a given technique for the particular application of determining the geometry of diesel injectors can be done on the basis of availability, intrusion and costs, rather than on its accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mobasheri R, Peng Z, Mostafa S (2012) Analysis the effect of advanced injection strategies on engine performance and pollutant emissions in a heavy duty DI-diesel engine by CFD modeling. Int J Heat Fluid Flow 33(1):59–69

    Article  CAS  Google Scholar 

  2. Dhar A, Agarwal AK (2015) Experimental investigations of the effect of pilot injection on performance, emissions and combustion characteristics of Karanja biodiesel fuelled CRDI engine. Energy Convers Manag 93:357–366

    Article  CAS  Google Scholar 

  3. Mohan B, Yang W, Chou SK (2013) Fuel injection strategies for performance improvement and emissions reduction in compression ignition engines—a review. Renew Sust Energ Rev 28(x):664–676

    Article  CAS  Google Scholar 

  4. Petrovic V, Bracanovic Z, Grozdanic B, Petrovic S, Sazhin S, Knezevic D (2015) The design of a full flow dilution tunnel with a critical flow venturi for the measurement of diesel engine particulate emission. FME Trans 43(2):99–106

    Article  Google Scholar 

  5. Ilić Z, Rasuo B, Jovanović M, Janković D (2013) Impact of changing quality of air/fuel mixture during flight of a piston engine aircraft with respect to vibration low frequency spectrum. FME Trans 41(1):25–32

    Google Scholar 

  6. Luján JM, Tormos B, Salvador FJ, Galgar K (2009) Comparative analysis of a DI diesel engine fuelled with biodiesel blends during the European MVEG-A cycle: Preliminaru study I. Biomass & Bioenergy 33(6–7):941–947

    Article  Google Scholar 

  7. Postrioti L, Mariani F, Battistoni M (2012) Experimental and numerical momentum flux evaluation of high pressure diesel spray. Fuel 98:149–163

    Article  CAS  Google Scholar 

  8. Payri R, Salvador FJ, Gimeno J, Venegas O (2016) A technique to match the refractive index of different diesel fuels with the refractive index of transparent materials to improve the experimental visualization. Exp Tech 40(1):261–269

    Article  Google Scholar 

  9. Duran SP, Porter JM, Parker TE (2015) Ballistic imaging of diesel sprays using a picosecond laser: characterization and demonstration. Appl Opt 54(7):1743

    Article  CAS  Google Scholar 

  10. Payri R, Salvador FJ, Gimeno J et al (2011) Flow regime effects on non-cavitating injection nozzles over spray behavior. Int J Heat Fluid Flow 32(1):273–284

    Article  Google Scholar 

  11. Koukouvinis P, Gavaises M, Li J, Wang L (2016) Large Eddy simulation of diesel injector including cavitation effects and correlation to erosion damage. Fuel 175:26–39

    Article  CAS  Google Scholar 

  12. Som S, Aggarwal SK (2010) Effects of primary breakup modeling on spray and combustion characteristics of compression ignition engines. Combust Flame 157(6):1179–1193

    Article  CAS  Google Scholar 

  13. Salvador FJ, De la Morena J, Martínez-López J, Jaramillo D (2017) Assessment of compressibility effects on internal nozzle flow in diesel injectors at very high injection pressures. Energy Convers Manag 132:221–230

    Article  CAS  Google Scholar 

  14. Salvador FJ, Gimeno J, de la Morena J, Martí-Aldaraví P (2012) Using one-dimensional modelling to analyze the influence of the use of biodiesels on the dynamic behaviour of solenoid-operated injectors in common rail systems: Results of the simulation and discussion. Energy Convers Manag 54(1):122–132

    Article  CAS  Google Scholar 

  15. Taghavifar H, Khalilarya S, Jafarmadar S, Baghery F (2016) 3-D numerical consideration of nozzle structure on combustion and emission characteristics of DI diesel injector. Appl Math Model 40(19–20):8630–8646

    Article  Google Scholar 

  16. Edelbauer W (2017) Numerical simulation of cavitating injector flow and liquid spray break-up by combination of Eulerian–Eulerian and volume-of-fluid methods. Comput Fluids 144:19–33

    Article  CAS  Google Scholar 

  17. Salvador FJ, Carreres M, Jaramillo D, Martínez-López J (2015) Comparison of microsac and VCO diesel injector nozzles in terms of internal nozzle flow characteristics. Energy Convers Manag 103:284–299

    Article  Google Scholar 

  18. Salvador FJ, Martínez-López J, Romero JV, Roselló MD (2013) Study of the influence of the needle eccentricity on the internal flow in diesel injector nozzles by computational fluid dynamics calculations. Int J Comput Math 91, no. June:24–31

    Article  Google Scholar 

  19. Payri R, Salvador FJ, Carreres M, De la Morena J (Apr. 2016) Fuel temperature influence on the performance of a last generation common-rail diesel ballistic injector. Part II: 1D model development, validation and analysis. Energy Convers Manag 114:376–391

    Article  Google Scholar 

  20. Salvador FJ, Hoyas S, Novella R, Martinez-López J (2011) Numerical simulation and extended validation of two-phase compressible flow in diesel injector nozzles. Proc Inst Mech Eng Part-D-J Automob Eng 225(D4):545–563

    Article  Google Scholar 

  21. Satkoski C, Shaver G (2011) Piezoelectric fuel injection: pulse-to-pulse coupling and flow rate estimation. IEEE/ASME Trans Mechatron 16(4):627–642

    Article  Google Scholar 

  22. Ferrari A, Mittica A (2016) Response of different injector typologies to dwell time variations and a hydraulic analysis of closely-coupled and continuous rate shaping injection schedules. Appl Energy 169:899–911

    Article  Google Scholar 

  23. Payri R, Salvador FJ, Gimeno J, De la Morena J (2011) Analysis of diesel spray atomization by means of a near-nozzle field visualization technique. At Sprays 21(9):753–774

    Article  CAS  Google Scholar 

  24. Li T, Moon S, Sato K, Yokohata H (Feb. 2017) A comprehensive study on the factors affecting near-nozzle spray dynamics of multi-hole GDI injectors. Fuel 190:292–302

    Article  CAS  Google Scholar 

  25. Yu W, Yang W, Zhao F (2017) Investigation of internal nozzle flow, spray and combustion characteristics fueled with diesel, gasoline and wide distillation fuel (WDF) based on a piezoelectric injector and a direct injection compression ignition engine. Appl Therm Eng 114:905–920

    Article  CAS  Google Scholar 

  26. Salvador FJ, Carreres M, Crialesi-Esposito M, Plazas AH (2017) Determination of critical operating and geometrical parameters in diesel injectors through one dimensional modelling, design of experiments and an analysis of variance. Proc Inst Mech Eng Part D J Automob Eng

  27. Macian V, Bermúdez V, Payri R, Gimeno J (2003) New technique for determination of internal geometry of a diesel nozzle with the use of silicone methodology. Exp Tech 27, no April:39–43

    Article  Google Scholar 

  28. Piano A, Millo F, Postrioti L, Biscontini G, Cavicchi A, and Pesce FC, (2016) “Numerical and experimental assessment of a solenoid common-rail injector operation with advanced injection strategies,” SAE Int J Engines 9(1)

    Article  Google Scholar 

  29. Mitroglou N, Lorenzi M, Santini M, Gavaises M (2016) Application of X-ray micro-computed tomography on high-speed cavitating diesel fuel flows. Exp Fluids 57(11):1–14

    Article  CAS  Google Scholar 

  30. Kastengren AL, Tilocco FZ, Powell CF, Manin J, Pickett LM, Payri R, Bazyn T (2012) Engine combustion network (ECN): measurements of nozzle geometry and hydraulic behavior. At Sprays 22(12):1011–1052

    Article  Google Scholar 

  31. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly sponsored by "Ministerio de Econom ía y Competitividad", of the Spanish Government, in the frame of the Project "Estudio de la interacción chorro-pared en condiciones realistas de motor", Reference TRA2015-67679-c2-1-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Salvador.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salvador, F.J., Gimeno, J., De la Morena, J. et al. Comparison of Different Techniques for Characterizing the Diesel Injector Internal Dimensions. Exp Tech 42, 467–472 (2018). https://doi.org/10.1007/s40799-018-0246-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40799-018-0246-1

Keywords

Navigation