Skip to main content
Log in

Transcription Factors and Splice Factors—Interconnected Regulators of Stem Cell Differentiation

  • REVIEW
  • Published:
Current Stem Cell Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The underlying molecular mechanisms that direct stem cell differentiation into fully functional, mature cells remain an area of ongoing investigation. Cell state is the product of the combinatorial effect of individual factors operating within a coordinated regulatory network. Here, we discuss the contribution of both gene regulatory and splicing regulatory networks in defining stem cell fate during differentiation and the critical role of protein isoforms in this process.

Recent Findings

We review recent experimental and computational approaches that characterize gene regulatory networks, splice regulatory networks, and the resulting transcriptome and proteome they mediate during differentiation. Such approaches include long-read RNA sequencing, which has demonstrated high-resolution profiling of mRNA isoforms, and Cas13-based CRISPR, which could make possible high-throughput isoform screening. Collectively, these developments enable system-level profiling of factors contributing to cell state.

Summary

Overall, gene and splice regulatory networks are important in defining cell state. The emerging high-throughput system-level approaches will characterize the gene regulatory network components necessary in driving stem cell differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  CAS  PubMed  Google Scholar 

  2. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  CAS  PubMed  Google Scholar 

  3. Salomonis N, Dexheimer PJ, Omberg L, Schroll R, Bush S, Huo J, et al. Integrated genomic analysis of diverse induced pluripotent stem cells from the progenitor cell biology consortium. Stem Cell Reports. 2016;7:110–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Takahashi K, Yamanaka S. A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol. 2016;17:183–93.

    Article  CAS  PubMed  Google Scholar 

  5. Creighton H, Waddington CH. The strategy of the genes. AIBS Bull. Oxford University Press (OUP); 1958;8:49.

  6. Panina Y, Karagiannis P, Kurtz A, Stacey GN, Fujibuchi W. Human cell atlas and cell-type authentication for regenerative medicine. Exp Mol Med. 2020;52:1443–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Macarthur BD, Ma’ayan A, Lemischka IR. Systems biology of stem cell fate and cellular reprogramming. Nat Rev Mol Cell Biol. 2009;10:672–81.

  8. Rowe RG, Daley GQ. Induced pluripotent stem cells in disease modelling and drug discovery. Nat Rev Genet. 2019;20:377–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sharma A, Sances S, Workman MJ, Svendsen CN. Multi-lineage human iPSC-derived platforms for disease modeling and drug discovery. Cell Stem Cell. 2020;26:309–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dejana E, Hirschi KK, Simons M. The molecular basis of endothelial cell plasticity. Nat Commun. 2017;8:14361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sriram G, Tan JY, Islam I, Rufaihah AJ, Cao T. Efficient differentiation of human embryonic stem cells to arterial and venous endothelial cells under feeder- and serum-free conditions. Stem Cell Res Ther. 2015;6:261.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kennedy M, Awong G, Sturgeon CM, Ditadi A, LaMotte-Mohs R, Zúñiga-Pflücker JC, et al. T lymphocyte potential marks the emergence of definitive hematopoietic progenitors in human pluripotent stem cell differentiation cultures. Cell Rep. 2012;2:1722–35.

    Article  CAS  PubMed  Google Scholar 

  13. Bargehr J, Ong LP, Colzani M, Davaapil H, Hofsteen P, Bhandari S, et al. Epicardial cells derived from human embryonic stem cells augment cardiomyocyte-driven heart regeneration. Nat Biotechnol. 2019;37:895–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim J, Koo B-K, Knoblich JA. Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol. 2020;21:571–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov. Springer Science and Business Media LLC; 2017;16:115–30.

  16. Yeo J-C, Ng H-H. The transcriptional regulation of pluripotency. Cell Res. 2013;23:20–32.

    Article  CAS  PubMed  Google Scholar 

  17. Mahla RS. Stem cells applications in regenerative medicine and disease therapeutics. Int J Cell Biol. 2016;2016:6940283.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Young RA. Control of the embryonic stem cell state. Cell. 2011;144:940–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mouse Genome Sequencing Consortium, Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, et al. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002;420:520–62.

  20. Lesha E, George H, Zaki MM, Smith CJ, Khoshakhlagh P, Ng AHM. A survey of transcription factors in cell fate control. Methods Mol Biol. 2023;2594:133–41.

    Article  PubMed  Google Scholar 

  21. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature. 2008;455:627–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yamanaka S. Induction of pluripotent stem cells from mouse fibroblasts by four transcription factors. Cell Prolif. 2008;41(Suppl 1):51–6.

    PubMed  Google Scholar 

  23. Vierbuchen T, Wernig M. Molecular roadblocks for cellular reprogramming. Mol Cell. 2012;47:827–38.

    Article  CAS  PubMed  Google Scholar 

  24. Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, et al. The human transcription factors. Cell. 2018;175:598–9.

    Article  CAS  PubMed  Google Scholar 

  25. Bulyk ML, Marian Walhout AJ. Gene regulatory networks [Internet]. Handbook of systems biology. 2013. p. 65–88. Available from: https://doi.org/10.1016/b978-0-12-385944-0.00004-6

  26. Farnham PJ. Insights from genomic profiling of transcription factors. Nat Rev Genet. 2009;10:605–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jolma A, Kivioja T, Toivonen J, Cheng L, Wei G, Enge M, et al. Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities. Genome Res. 2010;20:861–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Berger MF, Bulyk ML. Protein binding microarrays (PBMs) for rapid, high-throughput characterization of the sequence specificities of DNA binding proteins. Methods Mol Biol. 2006;338:245–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rockel S, Geertz M, Maerkl SJ. MITOMI: a microfluidic platform for in vitro characterization of transcription factor–DNA interaction. In: Deplancke B, Gheldof N, editors. Gene Regulatory Networks: Methods and Protocols. Totowa, NJ: Humana Press; 2012. p. 97–114.

    Chapter  Google Scholar 

  30. Galas DJ, Schmitz A. DNAase footprinting a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res Oxford Academic. 1978;5:3157–70.

    Article  CAS  Google Scholar 

  31. Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol. 2015;109:21.29.1–21.29.9.

  32. Johnson DS, Mortazavi A, Myers RM, Wold B. Genome-wide mapping of in vivo protein-DNA interactions. Science. 2007;316:1497–502.

    Article  CAS  PubMed  Google Scholar 

  33. Skene PJ, Henikoff S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. Elife [Internet]. 2017;6. Available from: https://doi.org/10.7554/eLife.21856

  34. Oh Y, Jang J. Directed differentiation of pluripotent stem cells by transcription factors. Mol Cells. 2019;42:200–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987;51:987–1000.

    Article  CAS  PubMed  Google Scholar 

  36. Aragon JW, Hirschi KK. Endothelial cell differentiation and hemogenic specification. Cold Spring Harb Perspect Med [Internet]. 2022; Available from: http://dx.doi.org/https://doi.org/10.1101/cshperspect.a041164

  37. •• Ng AHM, Khoshakhlagh P, Rojo Arias JE, Pasquini G, Wang K, Swiersy A, et al. A comprehensive library of human transcription factors for cell fate engineering. Nat Biotechnol. 2021;39:510–9. This study developed a library of human transcription factor open reading frame clones to profile the role of both transcription factor genes and isoforms in promoting cell differentiation. This was one of the first studies to study the role of TFs in defining cell fate at high throughput.

  38. Wilkinson AC, Nakauchi H, Göttgens B. Mammalian transcription factor networks: recent advances in interrogating biological complexity. Cell Syst. 2017;5:319–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. •• Joung J, Ma S, Tay T, Geiger-Schuller KR, Kirchgatterer PC, Verdine VK, et al. A transcription factor atlas of directed differentiation. Cell. 2023;186:209–229.e26. This study used single cell RNA-seq as a readout to profile transcription factor isoforms at a systems-level in its ability to drive cell-specific gene expression programs each TFs was profiled in terms of its ability to drive diverse cell-type-specific gene expression programs.

  40. Kinney MA, Vo LT, Frame JM, Barragan J, Conway AJ, Li S, et al. A systems biology pipeline identifies regulatory networks for stem cell engineering. Nat Biotechnol. 2019;37:810–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cahan P, Li H, Morris SA, Lummertz da Rocha E, Daley GQ, Collins JJ. CellNet: network biology applied to stem cell engineering. Cell. 2014;158:903–15.

  42. Rackham OJ, Firas J, Fang H, Oates ME, Holmes ML, Knaupp AS, et al. A predictive computational framework for direct reprogramming between human cell types. Nat Genet. 2016;48:331–5.

    Article  CAS  PubMed  Google Scholar 

  43. Wells CA, Choi J. Transcriptional profiling of stem cells: moving from descriptive to predictive paradigms. Stem Cell Reports. 2019;13:237–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stamm S, Ben-Ari S, Rafalska I, Tang YS, Zhang ZY, Toiber D, et al. Function of alternative splicing. Gene. 2005;344:1–20.

    Article  CAS  PubMed  Google Scholar 

  45. Kelemen O, Convertini P, Zhang Z, Wen Y, Shen M, Falaleeva M, et al. Function of alternative splicing. Gene. 2013;514:1–30.

    Article  CAS  PubMed  Google Scholar 

  46. Nilsen TW, Graveley BR. Expansion of the eukaryotic proteome by alternative splicing. Nature. 2010;463:457–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40:1413–5.

    Article  CAS  PubMed  Google Scholar 

  48. Yang X, Coulombe-Huntington J, Kang S, Sheynkman GM, Hao T, Richardson A, et al. Widespread expansion of protein interaction capabilities by alternative splicing. Cell. 2016;164:805–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wachtel C, Manley JL. Splicing of mRNA precursors: the role of RNAs and proteins in catalysis. Mol Biosyst. 2009;5:311–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee Y, Rio DC. Mechanisms and regulation of alternative pre-mRNA splicing. Annu Rev Biochem. 2015;84:291–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ule J, Blencowe BJ. Alternative splicing regulatory networks: functions, mechanisms, and evolution. Mol Cell. 2019;76:329–45.

    Article  CAS  PubMed  Google Scholar 

  52. •• Van Nostrand EL, Freese P, Pratt GA, Wang X, Wei X, Xiao R, et al. A large-scale binding and functional map of human RNA-binding proteins. Nature. 2020;583:711–9. This study characterized on a systems-level the functions of RNA binding proteins(RBPs) providing insight into the dynamic RBP-RNA complexes responsible for driving gene expression programs.

  53. Fu X-D, Ares M Jr. Context-dependent control of alternative splicing by RNA-binding proteins. Nat Rev Genet. 2014;15:689–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. He S, Valkov E, Cheloufi S, Murn J. The nexus between RNA-binding proteins and their effectors. Nat Rev Genet [Internet]. 2022; Available from: https://doi.org/10.1038/s41576-022-00550-0

  55. Quattrone A, Dassi E. The architecture of the human RNA-binding protein regulatory network. iScience. 2019;21:706–19.

  56. Geuens T, Bouhy D, Timmerman V. The hnRNP family: insights into their role in health and disease. Hum Genet. 2016;135:851–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Blencowe BJ. Alternative splicing: new insights from global analyses. Cell. 2006;126:37–47.

    Article  CAS  PubMed  Google Scholar 

  58. •• Marasco LE, Kornblihtt AR. The physiology of alternative splicing. Nat Rev Mol Cell Biol [Internet]. 2022; Available from: https://doi.org/10.1038/s41580-022-00545-z. This review summarizes the recent findings related to the process of alternative splicing and the complexity of the process with increased focus on the effect splicing induces at the protein level.

  59. Wright JE, Ciosk R. RNA-based regulation of pluripotency. Trends Genet. 2013;29:99–107.

    Article  CAS  PubMed  Google Scholar 

  60. Jangi M, Sharp PA. Building robust transcriptomes with master splicing factors. Cell. 2014;159:487–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li Y, Wang D, Wang H, Huang X, Wen Y, Wang B, et al. A splicing factor switch controls hematopoietic lineage specification of pluripotent stem cells. EMBO Rep. 2021;22: e50535.

    Article  CAS  PubMed  Google Scholar 

  62. Venables JP, Lapasset L, Gadea G, Fort P, Klinck R, Irimia M, et al. MBNL1 and RBFOX2 cooperate to establish a splicing programme involved in pluripotent stem cell differentiation. Nat Commun. 2013;4:2480.

    Article  PubMed  Google Scholar 

  63. Wineberg Y, Kanter I, Ben-Haim N, Pode-Shakked N, Bucris E, Bar-Lev TH, et al. Characterization of alternative mRNA splicing in cultured cell populations representing progressive stages of human fetal kidney development. Sci Rep. 2022;12:19548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang T, Lin Y, Liu J, Zhang ZG, Fu W, Guo LY, et al. Rbm24 regulates alternative splicing switch in embryonic stem cell cardiac lineage differentiation. Stem Cells. 2016;34:1776–89.

    Article  CAS  PubMed  Google Scholar 

  65. Montañés-Agudo P, Aufiero S, Schepers EN, van der Made I, Cócera-Ortega L, Ernault AC, et al. The RNA-binding protein QKI governs a muscle-specific alternative splicing program that shapes the contractile function of cardiomyocytes. Cardiovasc Res [Internet]. 2023; Available from: https://doi.org/10.1093/cvr/cvad007

  66. Keppetipola N, Sharma S, Li Q, Black DL. Neuronal regulation of pre-mRNA splicing by polypyrimidine tract binding proteins, PTBP1 and PTBP2. Crit Rev Biochem Mol Biol. 2012;47:360–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xue Y, Ouyang K, Huang J, Zhou Y, Ouyang H, Li H, et al. Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. Cell. 2013;152:82–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Linares AJ, Lin C-H, Damianov A, Adams KL, Novitch BG, Black DL. The splicing regulator PTBP1 controls the activity of the transcription factor Pbx1 during neuronal differentiation. Elife. 2015;4: e09268.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gehman LT, Meera P, Stoilov P, Shiue L, O’Brien JE, Meisler MH, et al. The splicing regulator Rbfox2 is required for both cerebellar development and mature motor function. Genes Dev. 2012;26:445–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gagliardi M, Matarazzo MRRIP. RNA immunoprecipitation. Methods Mol Biol. 2016;1480:73–86.

    Article  CAS  PubMed  Google Scholar 

  71. Van Nostrand EL, Pratt GA, Shishkin AA, Gelboin-Burkhart C, Fang MY, Sundararaman B, et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat Methods. 2016;13:508–14.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Danan C, Manickavel S, Hafner M. PAR-CLIP: a method for transcriptome-wide identification of RNA binding protein interaction sites. Methods Mol Biol. 2016;1358:153–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ascano M, Hafner M, Cekan P, Gerstberger S, Tuschl T. Identification of RNA-protein interaction networks using PAR-CLIP. Wiley Interdiscip Rev RNA. 2012;3:159–77.

    Article  CAS  PubMed  Google Scholar 

  74. Hafner M, Katsantoni M, Köster T, Marks J, Mukherjee J, Staiger D, et al. CLIP and complementary methods. Nature Reviews Methods Primers. Nature Publishing Group; 2021;1:1–23.

  75. • Castaldi PJ, Abood A, Farber CR, Sheynkman GM. Bridging the splicing gap in human genetics with long-read RNA sequencing: finding the protein isoform drivers of disease. Hum Mol Genet. 2022;31:R123–36. This review highlights recent advances provided through long-read sequencing platforms that enable enhanced characterization of splicing quantitative trait loci (sQTL) and the associated protein isoform to link isoforms to disease-relevant protein isoforms to offer solution to treating complex diseases.

  76. López AJ. Developmental role of transcription factor isoforms generated by alternative splicing. Dev Biol. 1995;172:396–411.

    Article  PubMed  Google Scholar 

  77. Niwa H. The principles that govern transcription factor network functions in stem cells. Development [Internet]. 2018;145. Available from: https://doi.org/10.1242/dev.157420

  78. Wang X, Dai JW. Concise review: isoforms of OCT4 contribute to the confusing diversity in stem cell biology. Stem Cells. 2010;28:885–93.

    Article  CAS  PubMed  Google Scholar 

  79. Atlasi Y, Mowla SJ, Ziaee SAM, Gokhale PJ, Andrews PW. OCT4 spliced variants are differentially expressed in human pluripotent and nonpluripotent cells [Internet]. Stem Cells. 2008. p. 3068–74. Available from: https://doi.org/10.1634/stemcells.2008-0530

  80. Cheong CY, Lufkin T. Alternative splicing in self-renewal of embryonic stem cells. Stem Cells Int [Internet]. 2011; Available from: https://doi.org/10.4061/2011/560261

  81. Gabut M, Samavarchi-Tehrani P, Wang X, Slobodeniuc V, O’Hanlon D, Sung H-K, et al. An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell. 2011;147:132–46.

    Article  CAS  PubMed  Google Scholar 

  82. Tatetsu H, Kong NR, Chong G, Amabile G, Tenen DG, Chai L. SALL4, the missing link between stem cells, development and cancer. Gene. 2016;584:111–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rao S, Zhen S, Roumiantsev S, McDonald LT, Yuan GC, Orkin SH. Differential roles of Sall4 isoforms in embryonic stem cell pluripotency. Mol Cell Biol. 2010;30:5364–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chepelev I, Chen X. Alternative splicing switching in stem cell lineages. Front Biol. 2013;8:50–9.

    Article  CAS  PubMed Central  Google Scholar 

  85. Real-time qRT-PCR [Internet]. [cited 2022 Dec 2]. Available from: https://www.ncbi.nlm.nih.gov/probe/docs/techqpcr/

  86. Hardwick SA, Joglekar A, Flicek P, Frankish A, Tilgner HU. Getting the entire message: progress in isoform sequencing. Front Genet. 2019;10:709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5:621–8.

    Article  CAS  PubMed  Google Scholar 

  88. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17:13.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Steijger T, Abril JF, Engstrom PG, Kokocinski F, Rgasp Consortium, Hubbard TJ, et al. Assessment of transcript reconstruction methods for RNA-seq. Nat Methods. 2013;10:1177–84.

  90. Nesvizhskii AI. Proteogenomics: concepts, applications and computational strategies. Nat Methods. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.; 2014;11:1114–25.

  91. van Dijk EL, Jaszczyszyn Y, Naquin D, Thermes C. The third revolution in sequencing technology. Trends Genet. 2018;34:666–81.

    Article  PubMed  Google Scholar 

  92. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, et al. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323:133–8.

    Article  CAS  PubMed  Google Scholar 

  93. Rhoads A, Au KF. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics. 2015;13:278–89.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Mantere T, Kersten S, Hoischen A. Long-read sequencing emerging in medical genetics. Front Genet. 2019;10:426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jain M, Olsen HE, Paten B, Akeson M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 2016;17:239.

    Article  PubMed  PubMed Central  Google Scholar 

  96. You Y, Prawer YDJ, De Paoli-Iseppi R, Hunt CPJ, Parish CL, Shim H, et al. Identification of cell barcodes from long-read single-cell RNA-seq with BLAZE [Internet]. bioRxiv. 2022 [cited 2022 Dec 13]. p. 2022.08.16.504056. Available from: https://doi.org/10.1101/2022.08.16.504056v1.full

  97. Al’Khafaji AM, Smith JT, Garimella KV, Babadi M, Sade-Feldman M, Gatzen M, et al. High-throughput RNA isoform sequencing using programmable cDNA concatenation [Internet]. bioRxiv. 2021 [cited 2022 Dec 13]. p. 2021.10.01.462818. Available from: https://www.biorxiv.org/content/biorxiv/early/2021/10/01/2021.10.01.462818

  98. Arzalluz-Luque A, Salguero P, Tarazona S, Conesa A. acorde unravels functionally interpretable networks of isoform co-usage from single cell data. Nat Commun. 2022;13:1828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tilgner H, Knowles DG, Johnson R, Davis CA, Chakrabortty S, Djebali S, et al. Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res. 2012;22:1616–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kosti I, Radivojac P, Mandel-Gutfreund Y. An integrated regulatory network reveals pervasive cross-regulation among transcription and splicing factors. PLoS Comput Biol. 2012;8: e1002603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Han H, Braunschweig U, Gonatopoulos-Pournatzis T, Weatheritt RJ, Hirsch CL, Ha KCH, et al. Multilayered control of alternative splicing regulatory networks by transcription factors. Mol Cell. 2017;65:539-553.e7.

    Article  CAS  PubMed  Google Scholar 

  102. Naftelberg S, Schor IE, Ast G, Kornblihtt AR. Regulation of alternative splicing through coupling with transcription and chromatin structure. Annu Rev Biochem. 2015;84:165–98.

    Article  CAS  PubMed  Google Scholar 

  103. Luco RF, Pan Q, Tominaga K, Blencowe BJ, Pereira-Smith OM, Misteli T. Regulation of alternative splicing by histone modifications. Science. 2010;327:996–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Agirre E, Oldfield AJ, Bellora N, Segelle A, Luco RF. Splicing-associated chromatin signatures: a combinatorial and position-dependent role for histone marks in splicing definition. Nat Commun. 2021;12:682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Liang Y, Xu H, Cheng T, Fu Y, Huang H, Qian W, et al. Gene activation guided by nascent RNA-bound transcription factors. Nat Commun. 2022;13:7329.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Oksuz O, Henninger JE, Warneford-Thomson R, Zheng MM, Erb H, Overholt KJ, et al. Transcription factors interact with RNA to regulate genes [Internet]. bioRxiv. 2022 [cited 2022 Dec 7]. p. 2022.09.27.509776. Available from: https://doi.org/10.1101/2022.09.27.509776v1.full

  107. Bertero A, Fields PA, Ramani V, Bonora G, Yardimci GG, Reinecke H, et al. Dynamics of genome reorganization during human cardiogenesis reveal an RBM20-dependent splicing factory. Nat Commun. 2019;10:1538.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Lu Y, Loh Y-H, Li H, Cesana M, Ficarro SB, Parikh JR, et al. Alternative splicing of MBD2 supports self-renewal in human pluripotent stem cells. Cell Stem Cell. 2014;15:92–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhu L, Choudhary K, Gonzalez-Teran B, Ang Y-S, Thomas R, Stone NR, et al. Transcription factor GATA4 regulates cell type-specific splicing through direct interaction With RNA in human induced pluripotent stem cell-derived cardiac progenitors. Circulation. 2022;146:770–87.

    Article  CAS  PubMed  Google Scholar 

  110. Aydin S, Pham DT, Zhang T, Keele GR, Skelly DA, Pankratz M, et al. Genetic dissection of the pluripotent proteome through multi-omics data integration [Internet]. bioRxiv. 2022 [cited 2022 Dec 12]. p. 2022.04.22.489216. Available from: https://doi.org/10.1101/2022.04.22.489216v1.abstract

  111. Liu Y, Beyer A, Aebersold R. On the dependency of cellular protein levels on mRNA abundance. Cell. 2016;165:535–50.

    Article  CAS  PubMed  Google Scholar 

  112. Kornblihtt AR, Schor IE, Alló M, Dujardin G, Petrillo E, Muñoz MJ. Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat Rev Mol Cell Biol. 2013;14:153–65.

    Article  CAS  PubMed  Google Scholar 

  113. Tress ML, Abascal F, Valencia A. Alternative splicing may not be the key to proteome complexity. Trends Biochem Sci. 2017;42:98–110.

    Article  CAS  PubMed  Google Scholar 

  114. Lindoso RS, Kasai-Brunswick TH, Monnerat Cahli G, Collino F, Bastos Carvalho A, Campos de Carvalho AC, et al. Proteomics in the world of induced pluripotent stem cells. Cells [Internet]. 2019;8. Available from: https://doi.org/10.3390/cells8070703

  115. Gundry RL, Burridge PW, Boheler KR. Pluripotent stem cell heterogeneity and the evolving role of proteomic technologies in stem cell biology. Proteomics. 2011;11:3947–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang J, Trowbridge JJ, Rao S, Orkin SH. Proteomic studies of stem cells. StemBook. Cambridge (MA): Harvard Stem Cell Institute; 2008.

  117. van Hoof D, Krijgsveld J, Mummery C. Proteomic analysis of stem cell differentiation and early development. Cold Spring Harb Perspect Biol [Internet]. 2012;4. Available from: https://doi.org/10.1101/cshperspect.a008177

  118. Van Hoof D, Heck AJR, Krijgsveld J, Mummery CL. Proteomics and human embryonic stem cells. Stem Cell Res. 2008;1:169–82.

    Article  PubMed  Google Scholar 

  119. Zaro BW, Noh JJ, Mascetti VL, Demeter J, George B, Zukowska M, et al. Proteomic analysis of young and old mouse hematopoietic stem cells and their progenitors reveals post-transcriptional regulation in stem cells. Elife [Internet]. 2020;9. Available from: https://doi.org/10.7554/eLife.62210

  120. Sabatier P, Beusch CM, Saei AA, Aoun M, Moruzzi N, Coelho A, et al. An integrative proteomics method identifies a regulator of translation during stem cell maintenance and differentiation. Nat Commun. 2021;12:6558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Phanstiel D, Brumbaugh J, Berggren WT, Conard K, Feng X, Levenstein ME, et al. Mass spectrometry identifies and quantifies 74 unique histone H4 isoforms in differentiating human embryonic stem cells. Proc Natl Acad Sci U S A. 2008;105:4093–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. She Y-M, Rosu-Myles M, Walrond L, Cyr TD. Quantification of protein isoforms in mesenchymal stem cells by reductive dimethylation of lysines in intact proteins. Proteomics. 2012;12:369–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Blakeley P, Siepen JA, Lawless C, Hubbard SJ. Investigating protein isoforms via proteomics: a feasibility study. Proteomics. 2010;10:1127–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Parrotta EI, Scalise S, Taverna D, De Angelis MT, Sarro G, Gaspari M, et al. Comprehensive proteogenomic analysis of human embryonic and induced pluripotent stem cells. J Cell Mol Med. 2019;23:5440–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Miller RM, Jordan BT, Mehlferber MM, Jeffery ED, Chatzipantsiou C, Kaur S, et al. Enhanced protein isoform characterization through long-read proteogenomics. Genome Biol BioMed Central. 2022;23:1–28.

    Google Scholar 

  126. Sheynkman GM, Shortreed MR, Cesnik AJ, Smith LM. Proteogenomics: integrating next-generation sequencing and mass spectrometry to characterize human proteomic variation. Annu Rev Anal Chem. 2016;9(9):521–45.

    Article  Google Scholar 

  127. Wang X, Slebos RJC, Wang D, Halvey PJ, Tabb DL, Liebler DC, et al. Protein identification using customized protein sequence databases derived from RNA-Seq data. J Proteome Res. 2012;11:1009–17.

    Article  CAS  PubMed  Google Scholar 

  128. • Mehlferber MM, Jeffery ED, Saquing J, Jordan BT, Sheynkman L, Murali M, et al. Characterization of protein isoform diversity in human umbilical vein endothelial cells via long-read proteogenomics. RNA Biol. 2022;19:1228–43. This study used long-read sequencing and matched mass-spectrometry data on an endothelial cell type to characterize protein isoform diversity and develop an atlas of novel isoforms of relevance to endothelial phenotypes.

  129. Endoh T, Ohtsuki T. Cellular siRNA delivery using cell-penetrating peptides modified for endosomal escape. Adv Drug Deliv Rev. 2009;61:704–9.

    Article  CAS  PubMed  Google Scholar 

  130. Dana H, Chalbatani GM, Mahmoodzadeh H, Karimloo R, Rezaiean O, Moradzadeh A, et al. Molecular mechanisms and biological functions of siRNA. Int J Biomed Sci. 2017;13:48–57.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Prinos P, Garneau D, Lucier J-F, Gendron D, Couture S, Boivin M, et al. Alternative splicing of SYK regulates mitosis and cell survival. Nat Struct Mol Biol. 2011;18:673–9.

    Article  CAS  PubMed  Google Scholar 

  132. Corey DR, Abrams JM. Morpholino antisense oligonucleotides: tools for investigating vertebrate development. Genome Biol. 2001;2:REVIEWS1015.

  133. Moulton JD. Using morpholinos to control gene expression. Curr Protoc Nucleic Acid Chem. 2007;Chapter 4:Unit 4.30.

  134. Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, et al. RNA targeting with CRISPR-Cas13. Nature. 2017;550:280–4.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, et al. RNA editing with CRISPR-Cas13. Science. 2017;358:1019–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Thomas JD, Polaski JT, Feng Q, De Neef EJ, Hoppe ER, McSharry MV, et al. RNA isoform screens uncover the essentiality and tumor-suppressor activity of ultraconserved poison exons. Nat Genet. 2020;52:84–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. •• Du M, Jillette N, Zhu JJ, Li S, Cheng AW. CRISPR artificial splicing factors. Nat Commun. 2020;11:2973. This study demonstrates the application of CRISPR Artificial Splicing Factors that can recapitulate induction of splicing patterns of target genes.

  138. Rhine CL, Neil C, Wang J, Maguire S, Buerer L, Salomon M, et al. Massively parallel reporter assays discover de novo exonic splicing mutants in paralogs of Autism genes. PLoS Genet. 2022;18: e1009884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Soemedi R, Cygan KJ, Rhine CL, Wang J, Bulacan C, Yang J, et al. Pathogenic variants that alter protein code often disrupt splicing. Nat Genet. 2017;49:848–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Veschini L, Sailem H, Malani D, Pietiäinen V, Stojiljkovic A, Wiseman E, et al. High-content imaging to phenotype human primary and iPSC-derived cells. Methods Mol Biol. 2021;2185:423–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Current Stem Cell Reports is grateful to Editor in Chief, Graça Almeida-Porada, MD, PhD, for her review of this manuscript.

Funding

This study was funded by grants T32HL007284 to MMM and R35GM142647-02 to GMS. M. N. K.-M. is partly supported by the following grants: NIH/NHLBI 5R01HL157780-02, NIH/NHLBI 1R01HL150589-01A1, Additional Ventures Single Ventricle Research Fund 1048010, Additional Ventures Expansion Award 988513, and American Heart Association 20TPA35490206. C.L.M. is supported by the following grants: NIH/NHLBI R01HL148239, NIH/NHLBI R01HL164577, and Fondation Leducq “PlaqOmics” 18CVD02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria M. Sheynkman.

Ethics declarations

Conflict of Interest

Madison M. Mehlferber, Muge Kuyumcu, Gloria M. Sheynkman declare they have no conflict of interest. Clint L. Miller has received funding support from AstraZeneca for work unrelated to the current study.

Human and Animal Rights and Informed Consent

This article does not contain studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehlferber, M.M., Kuyumcu-Martinez, M., Miller, C.L. et al. Transcription Factors and Splice Factors—Interconnected Regulators of Stem Cell Differentiation. Curr Stem Cell Rep 9, 31–41 (2023). https://doi.org/10.1007/s40778-023-00227-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40778-023-00227-2

Keywords

Navigation