Skip to main content

Advertisement

Log in

Lessons from Biology: Engineering Design Considerations for Modeling Human Hematopoiesis

  • Stem Cell Switches and Regulators (K Hirschi and N Genet, Section Editor)
  • Published:
Current Stem Cell Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Adult human hematopoiesis resides in the bone marrow (BM), which is comprised of multiple niches capable of supporting hematopoietic stem and progenitor cells (HSPCs), as well as their downstream lineages. In maintaining the blood-forming cells of the body, the BM microenvironment is spatially regulated by a number of stromal support cells to maintain HSPCs and promote their differentiation in response to exogenous stimuli (e.g., injury, regeneration, disease). Although mouse models are the gold standard for studying hematopoietic biology, in vitro models are gaining acceptance in studies of human-centered, patient-specific functions of blood and immune progenitors.

Recent Findings

Over the past 5–10 years, model systems of the BM, including ossicles, engineered tissues, and organs-on-a-chip, have emerged as new vehicles to study both healthy and malignant hematopoiesis.

Summary

In this review, we describe progress in bioengineered tools for studying the BM, as well as design considerations necessary for developing more advanced systems for precision medicine and translational applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as:

    • Of importance

      •• Of major importance

      1. Dzierzak E, Bigas A. Blood development: hematopoietic stem cell dependence and independence. Cell Stem Cell. 2018;22(5):639–51.

        Article  CAS  PubMed  Google Scholar 

      2. Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505(7483):327–34.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      3. Pinho S, Frenette PS. Haematopoietic stem cell activity and interactions with the niche. Nat Rev Mol Cell Biol. 2019;20(5):303–20.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      4. Ranzoni AM, Tangherloni A, Berest I, et al. Integrative single-cell RNA-seq and ATAC-seq analysis of human developmental hematopoiesis. Cell Stem Cell. 2021;28(3):472-487.e7.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      5. Bowman RL, Busque L, Levine RL. Clonal hematopoiesis and evolution to hematopoietic malignancies. Cell Stem Cell. 2018;22(2):157–70.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      6. Shanks N, Greek R, Greek J. Are animal models predictive for humans? Philos Ethics Humanit Med. 2009;4:2.

        Article  PubMed  PubMed Central  Google Scholar 

      7. Yin X, Benjamin, Mead E, et al. Engineering stem cell organoids. Cell Stem Cell. 2016;18(1):25–38.

      8. Tavakol DN, Fleischer S, Vunjak-Novakovic G. Harnessing organs-on-a-chip to model tissue regeneration. Cell Stem Cell. 2021;28(6):993–1015.

        Article  CAS  PubMed  Google Scholar 

      9. Ronaldson-Bouchard K, Vunjak-Novakovic G. Organs-on-a-chip: a fast track for engineered human tissues in drug development. Cell Stem Cell. 2018;22(3):310–24.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      10. Bourgine PE, Klein T, Paczulla AM, et al. In vitro biomimetic engineering of a human hematopoietic niche with functional properties. Proc Natl Acad Sci U S A. 2018;115(25):E5688-e5695.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      11. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

        Article  CAS  PubMed  Google Scholar 

      12. Yamanaka S. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell. 2012;10(6):678–84.

        Article  CAS  PubMed  Google Scholar 

      13. Sharma A, Sances S, Workman MJ, et al. Multi-lineage human iPSC-derived platforms for disease modeling and drug discovery. Cell Stem Cell. 2020;26(3):309–29.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      14. Hendriks D, Clevers H, Artegiani B. CRISPR-Cas tools and their application in genetic engineering of human stem cells and organoids. Cell Stem Cell. 2020;27(5):705–31.

        Article  CAS  PubMed  Google Scholar 

      15. Low  LA, Mummery C, Berridge BR, et al. Organs-on-chips: into the next decade. Nat Rev Drug Discov. (2020).

      16. Fleischer S, Tavakol DN, Vunjak-Novakovic G. From arteries to capillaries: approaches to engineering human vasculature. Adv Funct Mater. n/a(n/a) 2020;1910811.

      17. Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell. 2008;132(4):598–611.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      18. Rezza A, Sennett R, Rendl M. Chapter twelve - adult stem cell niches: cellular and molecular components, in: M. Rendl (Ed.), Current topics in developmental biology, Academic Press. 2014;333–372.

      19. Yu VW, Scadden DT. Hematopoietic stem cell and its bone marrow niche. Curr Top Dev Biol. 2016;118:21–44.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      20. Ramasamy SK, Kusumbe AP, Adams RH. Regulation of tissue morphogenesis by endothelial cell-derived signals. Trends Cell Biol. 2015;25(3):148–57.

        Article  PubMed  Google Scholar 

      21. Ding L, Saunders TL, Enikolopov G, et al. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012;481(7382):457–62.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      22. Genet N, Bhatt N, Bourdieu A, et al. Multifaceted roles of connexin 43 in stem cell niches. Current Stem Cell Reports. 2018;4(1):1–12.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      23. Winkler IG, Barbier V, Nowlan B, et al. Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat Med. 2012;18(11):1651–7.

        Article  CAS  PubMed  Google Scholar 

      24. Asada N, Kunisaki Y, Pierce H, et al. Differential cytokine contributions of perivascular haematopoietic stem cell niches, Nat Cell Biol. 2017;19(3):214–223.

      25. Kunisaki Y, Bruns I, Scheiermann C, et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature. 2013;502(7473):637–43.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      26. Naveiras O, Nardi V, Wenzel PL, et al. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature. 2009;460(7252):259–63.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      27. Zhou BO, Yu H, Yue R, et al. Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nat Cell Biol. 2017;19(8):891–903.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      28. Mansour A, Abou-Ezzi G, Sitnicka E, et al. Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow. J Exp Med. 2012;209(3):537–49.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      29. Taichman RS, Emerson SG. The role of osteoblasts in the hematopoietic microenvironment. Stem Cells. 1998;16(1):7–15.

        Article  CAS  PubMed  Google Scholar 

      30. Divieti Pajevic P, Krause DS. Osteocyte regulation of bone and blood. Bone 2019;119:13–18.

      31. Maryanovich M, Takeishi S, Frenette PS. Neural regulation of bone and bone marrow. Cold Spring Harb Perspect Med 2018;8(9).

      32. Mendez-Ferrer S, Lucas D, Battista M, et al. Haematopoietic stem cell release is regulated by circadian oscillations. Nature. 2008;452(7186):442–7.

        Article  CAS  PubMed  Google Scholar 

      33. Theocharis AD, Skandalis SS, Gialeli C, et al. Extracellular matrix structure. Adv Drug Deliv Rev. 2016;97:4–27.

        Article  CAS  PubMed  Google Scholar 

      34. Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta. 2014;1840(8):2506–19.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      35. Yu VWC, Scadden DT. Heterogeneity of the bone marrow niche. Curr Opin Hematol. 2016;23(4):331–8.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      36. Coutu DL, Kokkaliaris KD, Kunz L, et al. Three-dimensional map of nonhematopoietic bone and bone-marrow cells and molecules. Nat Biotechnol. 2017;35(12):1202–10.

        Article  CAS  PubMed  Google Scholar 

      37. Aasebø E, Birkeland E, Selheim F, et al. The extracellular bone marrow microenvironment—a proteomic comparison of constitutive protein release by in vitro cultured osteoblasts and mesenchymal stem cells. Cancers. 2021;13(1):62.

        Article  Google Scholar 

      38. Zöller M. CD44, hyaluronan, the hematopoietic stem cell, and leukemia-initiating cells. Front Immunol. 2015;6(235).

      39. Chen X-D, Dusevich V, Feng JQ, et al. Extracellular matrix made by bone marrow cells facilitates expansion of marrow-derived mesenchymal progenitor cells and prevents their differentiation into osteoblasts. J Bone Miner Res. 2007;22(12):1943–56.

        Article  CAS  PubMed  Google Scholar 

      40. Yamashita M, Dellorusso PV, Olson OC, et al. Dysregulated haematopoietic stem cell behaviour in myeloid leukaemogenesis. Nat Rev Cancer. 2020;20(7):365–82.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      41. Mitroulis I, Kalafati L, Bornhäuser M, et al. Regulation of the bone marrow niche by inflammation. Front Immunol. 2020;11:1540–1540.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      42. Witkowski MT, Dolgalev I, Evensen NA, et al. Extensive remodeling of the immune microenvironment in B cell acute lymphoblastic leukemia. Cancer Cell. 2020;37(6):867-882.e12.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      43. Kode A, Manavalan JS, Mosialou I, et al. Leukaemogenesis induced by an activating β-catenin mutation in osteoblasts. Nature. 2014;506(7487):240–4.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      44. Leimkühler NB, Gleitz HFE, Ronghui L, et al. Heterogeneous bone-marrow stromal progenitors drive myelofibrosis via a druggable alarmin axis. Cell Stem Cell. 2021;28(4):637-652.e8.

        Article  PubMed  PubMed Central  Google Scholar 

      45. Chramiec A, Vunjak-Novakovic G. Tissue engineered models of healthy and malignant human bone marrow. Adv Drug Deliv Rev. 2019;140:78–92.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      46. Reinisch A, Thomas D, Corces MR, et al. A humanized bone marrow ossicle xenotransplantation model enables improved engraftment of healthy and leukemic human hematopoietic cells. Nat Med. 2016;22(7):812–21.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      47. Abarrategi A, Mian SA, Passaro D, et al. Modeling the human bone marrow niche in mice: from host bone marrow engraftment to bioengineering approaches. J Exp Med. 2018;215(3):729–43.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      48. Tavakol DN, Tratwal J, Bonini F, et al. Injectable, scalable 3D tissue-engineered model of marrow hematopoiesis. Biomaterials. 2019;119665.

      49. •• Chou DB, Frismantas V, Milton Y, et al. On-chip recapitulation of clinical bone marrow toxicities and patient-specific pathophysiology. Nat Biomed Eng. 2020;4(4):394–406. This work describes the first multicellular, spatially-organized model of a human BM-on-a-chip to study application areas in radiation toxicity, blood disorder modeling, and therapeutic drug testing." but it would not let us bold the descriptive statement.

      50. Nelson MR, Ghoshal D, Mejías JC, et al. A multi-niche microvascularized human bone marrow (hBM) on-a-chip elucidates key roles of the endosteal niche in hBM physiology. Biomaterials. 2021;270:120683.

      51. Dupard SJ, Grigoryan A, Farhat S, et al. Development of humanized ossicles: bridging the hematopoietic gap. Trends Mol Med. 2020;26(6):552–69.

        Article  PubMed  Google Scholar 

      52. Krupnick AS, Shaaban A, Radu A, et al. Bone marrow tissue engineering. Tissue Eng. 2002;8(1):145–55.

        Article  CAS  PubMed  Google Scholar 

      53. Shah NJ, Mao AS, Shih T-Y, et al. An injectable bone marrow–like scaffold enhances T cell immunity after hematopoietic stem cell transplantation. Nat Biotechnol. 2019;37(3):293–302.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      54. Ferreira MS, Jahnen-Dechent W, Labude N, et al. Cord blood-hematopoietic stem cell expansion in 3D fibrin scaffolds with stromal support. Biomaterials. 2012;33(29):6987–97.

        Article  PubMed  Google Scholar 

      55. Leisten  I, Kramann R, Ventura Ferreira MS, et al. 3D co-culture of hematopoietic stem and progenitor cells and mesenchymal stem cells in collagen scaffolds as a model of the hematopoietic niche. Biomaterials. 2012;33(6):1736–47.

      56. Mahadik BP, Bharadwaj NAK, Ewoldt RH, et al. Regulating dynamic signaling between hematopoietic stem cells and niche cells via a hydrogel matrix. Biomaterials. 2017;125:54–64.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      57. Gilchrist AE, Lee S, Hu Y, et al. Soluble signals and remodeling in a synthetic gelatin-based hematopoietic stem cell niche. Adv Healthcare Mater. 2019;8(20):1900751.

        Article  CAS  Google Scholar 

      58. Gilchrist AE, Harley BAC. Connecting secretome to hematopoietic stem cell phenotype shifts in an engineered bone marrow niche. Integr Biol (Camb). 2020;12(7):175–87.

        Article  Google Scholar 

      59. Torisawa Y-S, Spina CS, Mammoto T, et al. Bone marrow–on–a–chip replicates hematopoietic niche physiology in vitro. Nat Methods. 2014;11(6):663–9.

        Article  CAS  PubMed  Google Scholar 

      60. Glaser DE, Curtis MB, Sariano PA, et al. Organ-on-a-chip model of vascularized human bone marrow niches, bioRxiv 2020.04.17.039339.

      61. Aleman J, George SK, Herberg S, et al. Deconstructed microfluidic bone marrow on-a-chip to study normal and malignant hemopoietic cell–niche interactions. Small. 2019;15(43):1902971.

        Article  CAS  Google Scholar 

      62. Belloni D, Heltai S, Ponzoni M, et al. Modeling multiple myeloma-bone marrow interactions and response to drugs in a 3D surrogate microenvironment. Haematologica. 2018;103(4):707–16.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      63. Ma C, Witkowski MT, Harris J, et al. Leukemia-on-a-chip: dissecting the chemoresistance mechanisms in B cell acute lymphoblastic leukemia bone marrow niche, Science Advances 2020;6(44):eaba5536.

      64. Chramiec A, Teles D, Yeager K, et al. Integrated human organ-on-a-chip model for predictive studies of anti-tumor drug efficacy and cardiac safety. Lab Chip. 2020;20(23):4357–72.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      65. Sieber S, Wirth L, Cavak N, et al. Bone marrow-on-a-chip: long-term culture of human haematopoietic stem cells in a three-dimensional microfluidic environment. J Tissue Eng Regen Med. 2018;12(2):479–89.

        Article  CAS  PubMed  Google Scholar 

      66. Marturano-Kruik A, Nava MM, Yeager K, et al. Human bone perivascular niche-on-a-chip for studying metastatic colonization. Proc Natl Acad Sci U S A. 2018;115(6):1256–61.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      67. Congrains A, Bianco J, Rosa RG, et al. 3D scaffolds to model the hematopoietic stem cell niche: applications and perspectives, Materials (Basel) 2021;14(3).

      68. Moore CA, Siddiqui Z, Carney GJ, et al. A 3D bioprinted material that recapitulates the perivascular bone marrow structure for sustained hematopoietic and cancer models, Polymers (Basel) 2021;13(4).

      69. Zhou D, Chen L, Ding J, et al. A 3D engineered scaffold for hematopoietic progenitor/stem cell co-culture in vitro. Sci Rep. 2020;10(1):11485.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      70. Sugiyama T, Kohara H, Noda M, et al. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006;25(6):977–88.

        Article  CAS  PubMed  Google Scholar 

      71. Kunz L, Schroeder T. A 3D tissue-wide digital imaging pipeline for quantitation of secreted molecules shows absence of CXCL12 gradients in bone marrow. Cell Stem Cell. 2019;25(6):846-854.e4.

        Article  CAS  PubMed  Google Scholar 

      72. Christodoulou C, Spencer JA, Yeh S-CA, et al. Live-animal imaging of native haematopoietic stem and progenitor cells. Nature. 2020;578(7794):278–83.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      73. Tratwal J, Bekri D, Boussema C, et al. MarrowQuant across aging and aplasia: a digital pathology workflow for quantification of bone marrow compartments in histological sections, Frontiers in Endocrinology 2020;11(480).

      74. Haas S. Hematopoietic stem cells in health and disease—insights from single-cell multi-omic approaches. Current Stem Cell Reports. 2020;6(3):67–76.

        Article  CAS  Google Scholar 

      75. Baccin C, Al-Sabah J, Velten L, et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat Cell Biol. 2020;22(1):38–48.

        Article  CAS  PubMed  Google Scholar 

      76. Graney PL, Tavakol DN, Chramiec A, et al. Engineered models of tumor metastasis with immune cell contributions. iScience 2021;102179.

      77. Sugimura R, Jha DK, Han A, et al. Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature. 2017;545(7655):432–8.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      78. Sturgeon CM, Ditadi A, Awong G, et al. Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells. Nat Biotechnol. 2014;32(6):554–61.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      79. Sandler VM, Lis R, Liu Y, et al. Reprogramming human endothelial cells to haematopoietic cells requires vascular induction. Nature. 2014;511(7509):312–8.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      80. Kotini AG, Chang C-J, Chow A, et al. Stage-specific human induced pluripotent stem cells map the progression of myeloid transformation to transplantable leukemia. Cell Stem Cell. 2017;20(3):315-328.e7.

        Article  CAS  PubMed  PubMed Central  Google Scholar 

      81. Doulatov S, Vo LT, Macari ER, et al. Drug discovery for Diamond-Blackfan anemia using reprogrammed hematopoietic progenitors, Science Translational Medicine 2017;9(376):eaah5645.

      82. Wang T, Pine AR, Kotini AG, et al. Sequential CRISPR gene editing in human iPSCs charts the clonal evolution of myeloid leukemia and identifies early disease targets, Cell Stem Cell (2021). This study demonstrated an expansion on previous iPSC-derived hematopoietic stem cell protocols, identifying stage-specific differences in modeling hematological malignancies in vitro.

      Download references

      Acknowledgements

      Figures were created in part with Biorender.com.

      Funding

      This study was financially supported by NIH (grants EB025765, EB027062, CA249799), NSF (Graduate Research Fellowship DGE1644869), NYSTEM (grant C32606GG), NASA (RAD0104), TRISH (NNX16A069A), Columbia 2020 SEAS-HICCC Pilot Grant, and Blavatnik Foundation.

      Author information

      Authors and Affiliations

      Authors

      Corresponding author

      Correspondence to Gordana Vunjak-Novakovic.

      Ethics declarations

      Conflict of Interest

      The authors declare that they have no conflict of interest.

      Human and Animal Rights and Informed Consent

      This article does not contain any studies with human or animal subjects performed by any of the authors.

      Additional information

      Publisher's Note

      Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

      This article is part of the Topical Collection on Stem Cell Switches and Regulators

      Rights and permissions

      Reprints and permissions

      About this article

      Check for updates. Verify currency and authenticity via CrossMark

      Cite this article

      Tavakol, D.N., Chen, J., Chavkin, N.W. et al. Lessons from Biology: Engineering Design Considerations for Modeling Human Hematopoiesis. Curr Stem Cell Rep 7, 174–184 (2021). https://doi.org/10.1007/s40778-021-00195-5

      Download citation

      • Accepted:

      • Published:

      • Issue Date:

      • DOI: https://doi.org/10.1007/s40778-021-00195-5

      Keywords

      Navigation