Skip to main content

Advertisement

Log in

Novel Cellular Therapeutic Approaches for the Prevention and Management of Graft-Versus-Host Disease

  • Cellular Therapies: Preclinical and Clinical (EM Horwitz, Section Editor)
  • Published:
Current Stem Cell Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Pharmacologic immunosuppression is the mainstay of treatment for GVHD, but there is a crucial need for new therapeutic approaches. Our review focuses on the preclinical and clinical evidence supporting immune regulatory cell infusions, allograft engineering, and suicide-gene-transduced donor T cells to mitigate GVHD. We also review potential challenges to the adoption and use of these therapies.

Recent Findings

Mesenchymal stromal cells and regulatory T cells appear effective in preventing and treating GVHD in preliminary studies, although methods of isolating and expanding these cells differ and warrant further investigation. Elimination of naïve or host-reactive donor T cells from allografts can prevent GVHD but may increase infection risk. Donor T cells engineered with human caspase 9 are rapidly eliminated after inducible gene activation, preventing GVHD.

Summary

Cellular therapeutics are a promising approach to mitigate GVHD. Clinical trials are underway domestically and internationally to establish the safety and efficacy of these approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Jagasia MH, Greinix HT, Arora M, Williams KM, Wolff D, Cowen EW, et al. National institutes of health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. The 2014 diagnosis and staging working group report. Biol Blood Marrow Transplant. 2015;21(3):389–401 e1. https://doi.org/10.1016/j.bbmt.2014.12.001.

    Article  PubMed  Google Scholar 

  2. Glucksberg H, Storb R, Fefer A, Buckner CD, Neiman PE, Clift RA, et al. Clinical manifestations of graft-versus-host disease in human recipients of marrow from HL-A-matched sibling donors. Transplantation. 1974;18(4):295–304.

    Article  CAS  PubMed  Google Scholar 

  3. Rowlings PA, Przepiorka D, Klein JP, Gale RP, Passweg JR, Henslee-Downey PJ, et al. IBMTR Severity Index for grading acute graft-versus-host disease: retrospective comparison with Glucksberg grade. Br J Haematol. 1997;97(4):855–64.

    Article  CAS  PubMed  Google Scholar 

  4. Zeiser R, Blazar BR. Acute graft-versus-host disease - biologic process, prevention, and therapy. N Engl J Med. 2017;377(22):2167–79. https://doi.org/10.1056/NEJMra1609337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. MacDonald KP, Hill GR, Blazar BR. Chronic graft-versus-host disease: biological insights from preclinical and clinical studies. Blood. 2017;129(1):13–21. https://doi.org/10.1182/blood-2016-06-686618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ruutu T, van Biezen A, Hertenstein B, Henseler A, Garderet L, Passweg J, et al. Prophylaxis and treatment of GVHD after allogeneic haematopoietic SCT: a survey of centre strategies by the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant. 2012;47(11):1459–64. https://doi.org/10.1038/bmt.2012.45.

    Article  CAS  PubMed  Google Scholar 

  7. Storb R, Deeg HJ, Whitehead J, Appelbaum F, Beatty P, Bensinger W, et al. Methotrexate and cyclosporine compared with cyclosporine alone for prophylaxis of acute graft versus host disease after marrow transplantation for leukemia. N Engl J Med. 1986;314(12):729–35. https://doi.org/10.1056/NEJM198603203141201.

    Article  CAS  PubMed  Google Scholar 

  8. Kroger N, Solano C, Wolschke C, Bandini G, Patriarca F, Pini M, et al. Antilymphocyte globulin for prevention of chronic graft-versus-host disease. N Engl J Med. 2016;374(1):43–53. https://doi.org/10.1056/NEJMoa1506002.

    Article  CAS  PubMed  Google Scholar 

  9. Arai Y, Jo T, Matsui H, Kondo T, Takaori-Kondo A. Efficacy of antithymocyte globulin for allogeneic hematopoietic cell transplantation: a systematic review and meta-analysis. Leuk Lymphoma. 2017;58(8):1840–8. https://doi.org/10.1080/10428194.2016.1266624.

    Article  CAS  PubMed  Google Scholar 

  10. Ziakas PD, Zervou FN, Zacharioudakis IM, Mylonakis E. Graft-versus-host disease prophylaxis after transplantation: a network meta-analysis. PLoS One. 2014;9(12):e114735. https://doi.org/10.1371/journal.pone.0114735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kasamon YL, Bolanos-Meade J, Prince GT, Tsai HL, McCurdy SR, Kanakry JA, et al. Outcomes of nonmyeloablative HLA-haploidentical blood or marrow transplantation with high-dose post-transplantation cyclophosphamide in older adults. J Clin Oncol. 2015;33(28):3152–61. https://doi.org/10.1200/JCO.2014.60.4777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Robinson TM, O'Donnell PV, Fuchs EJ, Luznik L. Haploidentical bone marrow and stem cell transplantation: experience with post-transplantation cyclophosphamide. Semin Hematol. 2016;53(2):90–7. https://doi.org/10.1053/j.seminhematol.2016.01.005.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Martin PJ, Rizzo JD, Wingard JR, Ballen K, Curtin PT, Cutler C, et al. First- and second-line systemic treatment of acute graft-versus-host disease: recommendations of the American Society of Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2012;18(8):1150–63. https://doi.org/10.1016/j.bbmt.2012.04.005.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wolff D, Schleuning M, von Harsdorf S, Bacher U, Gerbitz A, Stadler M, et al. Consensus conference on clinical practice in chronic GVHD: second-line treatment of chronic graft-versus-host disease. Biol Blood Marrow Transplant. 2011;17(1):1–17. https://doi.org/10.1016/j.bbmt.2010.05.011.

    Article  PubMed  Google Scholar 

  15. Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell. 2008;2(2):141–50. https://doi.org/10.1016/j.stem.2007.11.014.

    Article  CAS  PubMed  Google Scholar 

  16. Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells. 2008;26(1):212–22. https://doi.org/10.1634/stemcells.2007-0554.

    Article  CAS  PubMed  Google Scholar 

  17. Blazar BR, MacDonald KPA, Hill GR. Immune regulatory cell infusion for graft-versus-host disease prevention and therapy. Blood. 2018;131:2651–60. https://doi.org/10.1182/blood-2017-11-785865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Polchert D, Sobinsky J, Douglas G, Kidd M, Moadsiri A, Reina E, et al. IFN-gamma activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. Eur J Immunol. 2008;38(6):1745–55. https://doi.org/10.1002/eji.200738129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tisato V, Naresh K, Girdlestone J, Navarrete C, Dazzi F. Mesenchymal stem cells of cord blood origin are effective at preventing but not treating graft-versus-host disease. Leukemia. 2007;21(9):1992–9. https://doi.org/10.1038/sj.leu.2404847.

    Article  CAS  PubMed  Google Scholar 

  20. Lim JY, Ryu DB, Lee SE, Park G, Min CK. Mesenchymal stem cells (MSCs) attenuate cutaneous sclerodermatous graft-versus-host disease (Scl-GVHD) through inhibition of immune cell infiltration in a mouse model. J Invest Dermatol. 2017;137(9):1895–904. https://doi.org/10.1016/j.jid.2017.02.986.

    Article  CAS  PubMed  Google Scholar 

  21. Wang L, Zhang H, Guan L, Zhao S, Gu Z, Wei H, et al. Mesenchymal stem cells provide prophylaxis against acute graft-versus-host disease following allogeneic hematopoietic stem cell transplantation: a meta-analysis of animal models. Oncotarget. 2016;7(38):61764–74. https://doi.org/10.18632/oncotarget.11238.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sudres M, Norol F, Trenado A, Gregoire S, Charlotte F, Levacher B, et al. Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vitro but fail to prevent graft-versus-host disease in mice. J Immunol. 2006;176(12):7761–7.

    Article  CAS  PubMed  Google Scholar 

  23. Baron F, Storb R. Mesenchymal stromal cells: a new tool against graft-versus-host disease? Biol Blood Marrow Transplant. 2012;18(6):822–40. https://doi.org/10.1016/j.bbmt.2011.09.003.

    Article  PubMed  Google Scholar 

  24. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet. 2008;371(9624):1579–86. https://doi.org/10.1016/S0140-6736(08)60690-X.

    Article  CAS  PubMed  Google Scholar 

  25. • Chen X, Wang C, Yin J, Xu J, Wei J, Zhang Y. Efficacy of mesenchymal stem cell therapy for steroid-refractory acute graft-versus-host disease following allogeneic hematopoietic stem cell transplantation: a systematic review and meta-analysis. PLoS One. 2015;10(8):e0136991. https://doi.org/10.1371/journal.pone.0136991 Meta-analysis of 13 studies suggesting the safety and efficacy of mesenchymal stem cell infusions for the management of steroid-refractory acute GVHD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bader P, Kuci Z, Bakhtiar S, Basu O, Bug G, Dennis M, et al. Effective treatment of steroid and therapy-refractory acute graft-versus-host disease with a novel mesenchymal stromal cell product (MSC-FFM). Bone Marrow Transplant. 2018;53:852–62. https://doi.org/10.1038/s41409-018-0102-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kallekleiv M, Larun L, Bruserud O, Hatfield KJ. Co-transplantation of multipotent mesenchymal stromal cells in allogeneic hematopoietic stem cell transplantation: a systematic review and meta-analysis. Cytotherapy. 2016;18(2):172–85. https://doi.org/10.1016/j.jcyt.2015.11.010.

    Article  PubMed  Google Scholar 

  28. Galipeau J. The mesenchymal stromal cells dilemma--does a negative phase III trial of random donor mesenchymal stromal cells in steroid-resistant graft-versus-host disease represent a death knell or a bump in the road? Cytotherapy. 2013;15(1):2–8. https://doi.org/10.1016/j.jcyt.2012.10.002.

    Article  PubMed  Google Scholar 

  29. Galipeau J, Sensebe L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell. 2018;22(6):824–33. https://doi.org/10.1016/j.stem.2018.05.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Leveque-El Mouttie L, Koyama M, Le Texier L, Markey KA, Cheong M, Kuns RD, et al. Corruption of dendritic cell antigen presentation during acute GVHD leads to regulatory T-cell failure and chronic GVHD. Blood. 2016;128(6):794–804. https://doi.org/10.1182/blood-2015-11-680876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zorn E, Kim HT, Lee SJ, Floyd BH, Litsa D, Arumugarajah S, et al. Reduced frequency of FOXP3+ CD4+CD25+ regulatory T cells in patients with chronic graft-versus-host disease. Blood. 2005;106(8):2903–11. https://doi.org/10.1182/blood-2005-03-1257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rieger K, Loddenkemper C, Maul J, Fietz T, Wolff D, Terpe H, et al. Mucosal FOXP3+ regulatory T cells are numerically deficient in acute and chronic GvHD. Blood. 2006;107(4):1717–23. https://doi.org/10.1182/blood-2005-06-2529.

    Article  CAS  PubMed  Google Scholar 

  33. Heinrichs J, Bastian D, Veerapathran A, Anasetti C, Betts B, Yu XZ. Regulatory T-cell therapy for graft-versus-host disease. J Immunol Res Ther. 2016;1(1):1–14.

    PubMed  PubMed Central  Google Scholar 

  34. Edinger M, Hoffmann P, Ermann J, Drago K, Fathman CG, Strober S, et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med. 2003;9(9):1144–50. https://doi.org/10.1038/nm915.

    Article  CAS  PubMed  Google Scholar 

  35. Rezvani K, Mielke S, Ahmadzadeh M, Kilical Y, Savani BN, Zeilah J, et al. High donor FOXP3-positive regulatory T-cell (Treg) content is associated with a low risk of GVHD following HLA-matched allogeneic SCT. Blood. 2006;108(4):1291–7. https://doi.org/10.1182/blood-2006-02-003996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Taylor PA, Lees CJ, Blazar BR. The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. Blood. 2002;99(10):3493–9.

    Article  CAS  PubMed  Google Scholar 

  37. Trenado A, Charlotte F, Fisson S, Yagello M, Klatzmann D, Salomon BL, et al. Recipient-type specific CD4+CD25+ regulatory T cells favor immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia. J Clin Invest. 2003;112(11):1688–96. https://doi.org/10.1172/JCI17702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McDonald-Hyman C, Flynn R, Panoskaltsis-Mortari A, Peterson N, MacDonald KP, Hill GR, et al. Therapeutic regulatory T-cell adoptive transfer ameliorates established murine chronic GVHD in a CXCR5-dependent manner. Blood. 2016;128(7):1013–7. https://doi.org/10.1182/blood-2016-05-715896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Godfrey WR, Ge YG, Spoden DJ, Levine BL, June CH, Blazar BR, et al. In vitro-expanded human CD4(+)CD25(+) T-regulatory cells can markedly inhibit allogeneic dendritic cell-stimulated MLR cultures. Blood. 2004;104(2):453–61. https://doi.org/10.1182/blood-2004-01-0151.

    Article  CAS  PubMed  Google Scholar 

  40. Godfrey WR, Spoden DJ, Ge YG, Baker SR, Liu B, Levine BL, et al. Cord blood CD4(+)CD25(+)-derived T regulatory cell lines express FoxP3 protein and manifest potent suppressor function. Blood. 2005;105(2):750–8. https://doi.org/10.1182/blood-2004-06-2467.

    Article  CAS  PubMed  Google Scholar 

  41. Veerapathran A, Pidala J, Beato F, Yu XZ, Anasetti C. Ex vivo expansion of human Tregs specific for alloantigens presented directly or indirectly. Blood. 2011;118(20):5671–80. https://doi.org/10.1182/blood-2011-02-337097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hippen KL, Merkel SC, Schirm DK, Sieben CM, Sumstad D, Kadidlo DM, et al. Massive ex vivo expansion of human natural regulatory T cells (T(regs)) with minimal loss of in vivo functional activity. Sci Transl Med. 2011;3(83):83ra41. https://doi.org/10.1126/scitranslmed.3001809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. •• Di Ianni M, Falzetti F, Carotti A, Terenzi A, Castellino F, Bonifacio E, et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood. 2011;117(14):3921–8. https://doi.org/10.1182/blood-2010-10-311894 Prospective clinical trial investigating the efficacy of prophylactic regulatory T cell infusion during haploidentical stem cell transplant for the prevention of GVHD. Only 2 of 26 patients developed acute GVHD and no patients developed chronic GVHD after nearly 1 year of follow-up.

    Article  CAS  PubMed  Google Scholar 

  44. Brunstein CG, Miller JS, Cao Q, McKenna DH, Hippen KL, Curtsinger J, et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood. 2011;117(3):1061–70. https://doi.org/10.1182/blood-2010-07-293795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brunstein CG, Blazar BR, Miller JS, Cao Q, Hippen KL, McKenna DH, et al. Adoptive transfer of umbilical cord blood-derived regulatory T cells and early viral reactivation. Biol Blood Marrow Transplant. 2013;19(8):1271–3. https://doi.org/10.1016/j.bbmt.2013.06.004.

    Article  CAS  PubMed  Google Scholar 

  46. Brunstein CG, Miller JS, McKenna DH, Hippen KL, DeFor TE, Sumstad D, et al. Umbilical cord blood-derived T regulatory cells to prevent GVHD: kinetics, toxicity profile, and clinical effect. Blood. 2016;127(8):1044–51. https://doi.org/10.1182/blood-2015-06-653667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Theil A, Tuve S, Oelschlagel U, Maiwald A, Dohler D, Ossmann D, et al. Adoptive transfer of allogeneic regulatory T cells into patients with chronic graft-versus-host disease. Cytotherapy. 2015;17(4):473–86. https://doi.org/10.1016/j.jcyt.2014.11.005.

    Article  CAS  PubMed  Google Scholar 

  48. Vadakekolathu J, Rutella S. T-cell manipulation strategies to prevent graft-versus-host disease in haploidentical stem cell transplantation. Biomedicine. 2017;5(2). https://doi.org/10.3390/biomedicines5020033.

  49. Pasquini MC, Devine S, Mendizabal A, Baden LR, Wingard JR, Lazarus HM, et al. Comparative outcomes of donor graft CD34+ selection and immune suppressive therapy as graft-versus-host disease prophylaxis for patients with acute myeloid leukemia in complete remission undergoing HLA-matched sibling allogeneic hematopoietic cell transplantation. J Clin Oncol. 2012;30(26):3194–201. https://doi.org/10.1200/JCO.2012.41.7071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Saad A, Lamb LS. Ex vivo T-cell depletion in allogeneic hematopoietic stem cell transplant: past, present and future. Bone Marrow Transplant. 2017;52(9):1241–8. https://doi.org/10.1038/bmt.2017.22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Anderson BE, McNiff J, Yan J, Doyle H, Mamula M, Shlomchik MJ, et al. Memory CD4+ T cells do not induce graft-versus-host disease. J Clin Invest. 2003;112(1):101–8. https://doi.org/10.1172/JCI17601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen BJ, Cui X, Sempowski GD, Liu C, Chao NJ. Transfer of allogeneic CD62L- memory T cells without graft-versus-host disease. Blood. 2004;103(4):1534–41. https://doi.org/10.1182/blood-2003-08-2987.

    Article  CAS  PubMed  Google Scholar 

  53. Bleakley M, Heimfeld S, Jones LA, Turtle C, Krause D, Riddell SR, et al. Engineering human peripheral blood stem cell grafts that are depleted of naive T cells and retain functional pathogen-specific memory T cells. Biol Blood Marrow Transplant. 2014;20(5):705–16. https://doi.org/10.1016/j.bbmt.2014.01.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Muller N, Landwehr K, Langeveld K, Stenzel J, Pouwels W, van der Hoorn M, et al. Generation of alloreactivity-reduced donor lymphocyte products retaining memory function by fully automatic depletion of CD45RA-positive cells. Cytotherapy. 2018;20(4):532–42. https://doi.org/10.1016/j.jcyt.2018.01.006.

    Article  CAS  PubMed  Google Scholar 

  55. •• Bleakley M, Heimfeld S, Loeb KR, Jones LA, Chaney C, Seropian S, et al. Outcomes of acute leukemia patients transplanted with naive T cell-depleted stem cell grafts. J Clin Invest. 2015;125(7):2677–89. https://doi.org/10.1172/JCI81229 Prospective study of CD45RA (naive) T cell depleted allogeneic stem cell transplantation. Two thirds of patients developed acute GVHD, but this was highly steroid-responsive, while the frequency of chronic GVHD was less than 10% at 2 years.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Triplett BM, Shook DR, Eldridge P, Li Y, Kang G, Dallas M, et al. Rapid memory T-cell reconstitution recapitulating CD45RA-depleted haploidentical transplant graft content in patients with hematologic malignancies. Bone Marrow Transplant. 2015;50(7):968–77. https://doi.org/10.1038/bmt.2014.324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Triplett BM, Muller B, Kang G, Li Y, Cross SJ, Moen J, et al. Selective T-cell depletion targeting CD45RA reduces viremia and enhances early T-cell recovery compared with CD3-targeted T-cell depletion. Transpl Infect Dis. 2018;20(1):e12823. https://doi.org/10.1111/tid.12823.

    Article  CAS  Google Scholar 

  58. Villeneuve L. Ex vivo photodynamic purging in chronic myelogenous leukaemia and other neoplasias with rhodamine derivatives. Biotechnol Appl Biochem. 1999;30(Pt 1):1–17.

    CAS  PubMed  Google Scholar 

  59. Chen BJ, Cui X, Liu C, Chao NJ. Prevention of graft-versus-host disease while preserving graft-versus-leukemia effect after selective depletion of host-reactive T cells by photodynamic cell purging process. Blood. 2002;99(9):3083–8.

    Article  CAS  PubMed  Google Scholar 

  60. Mielke S, Nunes R, Rezvani K, Fellowes VS, Venne A, Solomon SR, et al. A clinical-scale selective allodepletion approach for the treatment of HLA-mismatched and matched donor-recipient pairs using expanded T lymphocytes as antigen-presenting cells and a TH9402-based photodepletion technique. Blood. 2008;111(8):4392–402. https://doi.org/10.1182/blood-2007-08-104471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mielke S, McIver ZA, Shenoy A, Fellowes V, Khuu H, Stroncek DF, et al. Selectively T cell-depleted allografts from HLA-matched sibling donors followed by low-dose posttransplantation immunosuppression to improve transplantation outcome in patients with hematologic malignancies. Biol Blood Marrow Transplant. 2011;17(12):1855–61. https://doi.org/10.1016/j.bbmt.2011.05.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Roy D-C, Lachance S, Roy J, Walker I, Maertens J, Delisle J-S, et al. Donor lymphocytes depleted of Alloreactive T-Cells (ATIR101) Improve Event-Free Survival (GRFS) and Overall survival in a T-cell depleted haploidentical HSCT: phase 2 trial in patients with AML and ALL. Blood. 2016;128(22):1226.

    Google Scholar 

  63. Leen AM, Bollard CM, Mendizabal AM, Shpall EJ, Szabolcs P, Antin JH, et al. Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood. 2013;121(26):5113–23. https://doi.org/10.1182/blood-2013-02-486324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Di Nardo M, Li Pira G, Amodeo A, Cecchetti C, Giorda E, Ceccarelli S, et al. Adoptive immunotherapy with antigen-specific T cells during extracorporeal membrane oxygenation (ECMO) for adenovirus-related respiratory failure in a child given haploidentical stem cell transplantation. Pediatr Blood Cancer. 2014;61(2):376–9. https://doi.org/10.1002/pbc.24753.

    Article  PubMed  Google Scholar 

  65. Chapuis AG, Ragnarsson GB, Nguyen HN, Chaney CN, Pufnock JS, Schmitt TM, et al. Transferred WT1-reactive CD8+ T cells can mediate antileukemic activity and persist in post-transplant patients. Sci Transl Med. 2013;5(174):174ra27. https://doi.org/10.1126/scitranslmed.3004916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ciceri F, Bonini C, Stanghellini MT, Bondanza A, Traversari C, Salomoni M, et al. Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I-II study. Lancet Oncol. 2009;10(5):489–500. https://doi.org/10.1016/S1470-2045(09)70074-9.

    Article  PubMed  Google Scholar 

  67. Di Stasi A, Tey SK, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C, et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med. 2011;365(18):1673–83. https://doi.org/10.1056/NEJMoa1106152.

    Article  PubMed  PubMed Central  Google Scholar 

  68. •• Zhou X, Di Stasi A, Tey SK, Krance RA, Martinez C, Leung KS, et al. Long-term outcome after haploidentical stem cell transplant and infusion of T cells expressing the inducible caspase 9 safety transgene. Blood. 2014;123(25):3895–905. https://doi.org/10.1182/blood-2014-01-551671 Small study of patients receiving suicide-gene-transduced donor T cells in the setting of allogeneic stem cell transplantation. This demonstrated the feasibility of an inducible caspase 9 platform to rapidly eliminate populations of transduced T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhou X, Dotti G, Krance RA, Martinez CA, Naik S, Kamble RT, et al. Inducible caspase-9 suicide gene controls adverse effects from alloreplete T cells after haploidentical stem cell transplantation. Blood. 2015;125(26):4103–13. https://doi.org/10.1182/blood-2015-02-628354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhou X, Naik S, Dakhova O, Dotti G, Heslop HE, Brenner MK. Serial activation of the inducible caspase 9 safety switch after human stem cell transplantation. Mol Ther. 2016;24(4):823–31. https://doi.org/10.1038/mt.2015.234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Algeri M NS, Kapoor N, Mahadeo K, Aquino V, Woolfrey A, Bertaina A, Merli P, Woolfrey A, Galaverna F, Mahadeo K, Baumeister S, Nemecek E, Qasim W, Pagliara D, Li Pira G, Krishnamurti L, Jacobsohn D, Slatter M, Weinberg J, Moseley A, Locatelli F. BPX-501 donor T cell infusion (with inducible caspasE 9 suicide gene) facilitates HLA-haploidentical stem cell transplant in children with both hematological malignancies and non-malignant conditions. 22nd Congress of EHA; June 22–25, 2017; Madrid, Spain, 2017.

  72. Merli P BV, Galaverna F, Algeri M, Sinibaldi M, Strocchio L, Li Pira G, Pagliara D, De Murtas S, Palumbo G, O'Neill V, Spencer DM, Foster A, Bertaina A, Locatelli F. Donor T cells genetically modified with a novel suicide gene (inducible caspase 9, iC9) expand and persist over time after post-allograft infusion in patients given αβ T-cell and B-cell depleted HLA-haploidentical allogeneic stem cell transplantation (αβ haplo-HSCT) contributing to accelerate immune recovery. ASH Annual Conference; December 9–12, 2017; Atlanta, Georgia, 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shekeab Jauhari.

Ethics declarations

Conflict of Interest

Shekeab Jauhari and Nelson Chao declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cellular Therapies: Preclinical and Clinical

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jauhari, S., Chao, N. Novel Cellular Therapeutic Approaches for the Prevention and Management of Graft-Versus-Host Disease. Curr Stem Cell Rep 4, 318–326 (2018). https://doi.org/10.1007/s40778-018-0146-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40778-018-0146-4

Keywords

Navigation