Skip to main content

Advertisement

Log in

Therapeutic Applications for Adipose-Derived Stem Cells in Wound Healing and Tissue Engineering

  • Artificial Tissues (A Atala and JG Hunsberger, Section Editors)
  • Published:
Current Stem Cell Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The use of adipose-derived stem cells (ASCs) has garnered recent interest for their accessibility and potential utility in wound healing applications. The purpose of this review is to provide an overview of developments within the last 5 years regarding therapeutic use of ASCs in wound healing applications.

Recent Findings

Recent studies have demonstrated that ASCs do not exert the majority of their effects through differentiation, as previously believed. Rather, when they improve healing, it is via secreted factors that promote vascularization and control inflammation. New therapeutic approaches reflect this shift in belief.

Summary

ASC-based therapies can improve outcomes in the treatment of a variety of wound types. Questions about how to best implement ASCs in the clinical setting remain, and their answers will profoundly influence the utility and availability of ASC-based therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as:•  Of importance•• Of major importance

  1. Takeo M, Lee W, Ito M. Wound healing and skin regeneration. Cold Spring Harb Perspect Med. 2015;5:a023267.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Singer AJ, Clark RAF. Cutaneous wound healing. N Engl J Med. 1999;341:738–46.

    Article  PubMed  CAS  Google Scholar 

  3. Almine JF, Wise SG, Weiss AS. Elastin signaling in wound repair. Birth Defects Res Part C - Embryo Today Rev. 2012;96:248–57.

    Article  CAS  Google Scholar 

  4. Loder S, Peterson JR, Agarwal S, Eboda O, Brownley C, Delarosa S, et al. Wound healing after thermal injury is improved by fat and adipose-derived stem cell isografts. J Burn Care Res. 2015;36:70–6.

    Article  PubMed  Google Scholar 

  5. Goel A, Shrivastava P. Post-burn scars and scar contractures. Indian J Plast Surg. 2010;43:63.

    Article  Google Scholar 

  6. Xue M, Jackson CJ. Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv Wound Care. 2015;4:119–36.

    Article  Google Scholar 

  7. Ehrlich HP, Krummel TM. Regulation of wound healing from a connective tissue perspective. Wound Rep Reg. 1996;4:203–10.

    Article  CAS  Google Scholar 

  8. Lo DD, Zimmermann AS, Nauta A, Longaker MT, Lorenz HP. Scarless fetal skin wound healing update. Birth Defects Res Part C - Embryo Today Rev. 2012;96:237–47.

    Article  CAS  Google Scholar 

  9. Gawronska-Kozak B, Bogacki M, Rim JS, Monroe WT, Manuel JA. Scarless skin repair in immunodeficient mice. Wound Repair Regen. 2006;14:265–76.

    Article  PubMed  Google Scholar 

  10. Yates CC, Hebda P, Wells A. Skin wound healing and scarring: fetal wounds and regenerative restitution. Birth Defects Res Part C - Embryo Today Rev. 2012;96:325–33.

    Article  CAS  Google Scholar 

  11. Kur-Piotrowska A, Kopcewicz M, Kozak LP, Sachadyn P, Grabowska A, Gawronska-Kozak B. Neotenic phenomenon in gene expression in the skin of Foxn1-deficient (nude) mice -a projection for regenerative skin wound healing. BMC Genomics. 2017;18:56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Hassan WU, Greiser U, Wang W. Role of adipose-derived stem cells in wound healing. Wound Repair Regen. 2014;22:313–25.

    Article  PubMed  Google Scholar 

  13. Frykberg RG, Banks J. Challenges in the treatment of chronic wounds. Adv Wound Care. 2015;4:560–82.

    Article  Google Scholar 

  14. Järbrink K, Ni G, Sönnergren H, Schmidtchen A, Pang C, Bajpai R, et al. The humanistic and economic burden of chronic wounds: a protocol for a systematic review. Syst Rev. 2017;6:15. https://doi.org/10.1186/s13643-016-0400-8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Skrepnek GH, Mills JL, Armstrong DG. A diabetic emergency one million feet long: disparities and burdens of illness among diabetic foot ulcer cases within emergency departments in the United States, 2006-2010. PLoS One. 2015;10:e0134914.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med. 2014;6:265sr6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–28.

    Article  PubMed  CAS  Google Scholar 

  18. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(80):143–7.

    Article  PubMed  CAS  Google Scholar 

  19. Zuk PA. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Tsuji W, Rubin JP, Marra KG. Adipose-derived stem cells: implications in tissue regeneration. World J Stem Cells. 2014;6:312–21.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Toyserkani NM, Christensen ML, Sheikh SP, Sørensen JA. Adipose-derived stem cells: new treatment for wound healing? Ann Plast Surg. 2015;75:117–23.

    Article  PubMed  CAS  Google Scholar 

  22. van den Broek LJ, Kroeze KL, Waaijman T, Breetveld M, Sampat-Sardjoepersad SC, Niessen FB, et al. Differential response of human adipose tissue-derived mesenchymal stem cells, dermal fibroblasts, and keratinocytes to burn wound exudates: potential role of skin-specific chemokine CCL27. Tissue Eng Part A. 2014;20:197–209.

    Article  PubMed  CAS  Google Scholar 

  23. Bertozzi N, Simonacci F, Grieco MP, Grignaffini E, Raposio E. The biological and clinical basis for the use of adipose-derived stem cells in the field of wound healing. Ann Med Surg. 2017;20:41–8.

    Article  Google Scholar 

  24. Linero I, Chaparro O. Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration. PLoS One. 2014;9:e107001. https://doi.org/10.1371/journal.pone.0107001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Blaber SP, Webster RA, Hill CJ, Breen EJ, Kuah D, Vesey G, et al. Analysis of in vitro secretion profiles from adipose-derived cell populations. J Transl Med. 2012;10:172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kuo Y-R, Wang C-T, Cheng J-T, Kao G-S, Chiang Y-C, Wang C-J. Adipose-derived stem cells accelerate diabetic wound healing through the induction of autocrine and paracrine effects. Cell Transplant. 2016;25:71–81.

    Article  PubMed  Google Scholar 

  27. Kim WS, Park BS, Sung JH, Yang JM, Park SB, Kwak SJ, et al. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci. 2007;48:15–24.

    Article  PubMed  CAS  Google Scholar 

  28. Kwon SH, Bhang SH, Jang HK, Rhim T, Kim BS. Conditioned medium of adipose-derived stromal cell culture in three-dimensional bioreactors for enhanced wound healing. J Surg Res. 2015;194:8–17.

    Article  PubMed  CAS  Google Scholar 

  29. Deng C, He Y, Feng J, Dong Z. Extracellular matrix / stromal vascular fraction gel conditioned medium accelerates wound healing in a murine model. Wound Repair Regen. 2017;25:923–32. https://doi.org/10.1111/wrr.12602.

    Article  PubMed  Google Scholar 

  30. Zhao L, Johnson T, Liu D. Therapeutic angiogenesis of adipose-derived stem cells for ischemic diseases. Stem Cell Res Ther. 2017;8:125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Su N, Gao PL, Wang K, Wang JY, Zhong Y, Luo Y. Fibrous scaffolds potentiate the paracrine function of mesenchymal stem cells: a new dimension in cell-material interaction. Biomaterials. 2017;141:74–85.

    Article  PubMed  CAS  Google Scholar 

  32. Dai R, Wang Z, Samanipour R, Koo K-I, Kim K. Adipose-derived stem cells for tissue engineering and regenerative medicine applications. Stem Cells Int. 2016;2016:1–19.

    CAS  Google Scholar 

  33. Hu L, Wang J, Zhou X, Xiong Z, Zhao J, Yu R, et al. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci Rep. 2016;6:32993.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Wang L, Hu L, Zhou X, Xiong Z, Zhang C, Shehada HMA, et al. Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling. Sci Rep. 2017;7:13321.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Hiwatashi N, Hirano S, Mizuta M, Tateya I, Kanemaru SI, Nakamura T, et al. Adipose-derived stem cells versus bone marrow-derived stem cells for vocal fold regeneration. Laryngoscope. 2014;124:E461–9.

    Article  PubMed  CAS  Google Scholar 

  36. Kokai LE, Marra K, Rubin JP. Adipose stem cells: biology and clinical applications for tissue repair and regeneration. Transl Res. 2014;163:399–408.

    Article  PubMed  CAS  Google Scholar 

  37. McLaughlin MM, Marra KG. The use of adipose-derived stem cells as sheets for wound healing. Organ. 2013;9:79–81.

    Google Scholar 

  38. Koellensperger E, Lampe K, Beierfuss A, Gramley F, Germann G, Leimer U. Intracutaneously injected human adipose tissue-derived stem cells in a mouse model stay at the site of injection. J Plast Reconstr Aesthetic Surg. 2014;67:844–50.

    Article  CAS  Google Scholar 

  39. Huang S-MS-P, Huang C-H, Shyu J-F, Lee H-S, Chen S-G, Chan JY-H, et al. Promotion of wound healing using adipose-derived stem cells in radiation ulcer of a rat model. J Biomed Sci. 2013;20:51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ucuzian AA, Gassman AA, East AT, Greisler HP. Molecular mediators of angiogenesis. J Burn Care Res. 2010;31:158–75.

    Article  PubMed  Google Scholar 

  41. Cerqueira MT, Pirraco RP, Marques AP. Stem cells in skin wound healing: are we there yet? Adv Wound Care. 2016;5:164–75.

    Article  Google Scholar 

  42. Mi HM, Sun YK, Yeon JK, Su JK, Jae BL, Yong CB, et al. Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cell Physiol Biochem. 2006;17:279–90.

    Article  CAS  Google Scholar 

  43. Simpson RJ, Jensen SS, Lim JWE. Proteomic profiling of exosomes: current perspectives. Proteomics. 2008;8:4083–99.

    Article  PubMed  CAS  Google Scholar 

  44. Lin R, Wang S, Zhao RC. Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model. Mol Cell Biochem. 2013;383:13–20.

    Article  PubMed  CAS  Google Scholar 

  45. Kang S, Kim S-M, Sung J-H. Cellular and molecular stimulation of adipose-derived stem cells under hypoxia. Cell Biol Int. 2014;38:553–62.

    Article  PubMed  CAS  Google Scholar 

  46. Kakudo N, Morimoto N, Ogawa T, Taketani S, Kusumoto K. Hypoxia enhances proliferation of human adipose-derived stem cells via HIF-1α activation. PLoS One. 2015;10:e0139890.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Hsiao ST, Lokmic Z, Peshavariya H, Abberton KM, Dusting GJ, Lim SY, et al. Hypoxic conditioning enhances the Angiogenic paracrine activity of human adipose-derived stem cells. Stem Cells Dev. 2013;22:1614–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Markeson D, Pleat JM, Sharpe JR, Harris AL, Seifalian AM, Watt SM. Scarring, stem cells, scaffolds and skin repair. J Tissue Eng Regen Med. 2015;9:649–68.

    Article  PubMed  Google Scholar 

  49. Bliley JM, Argenta A, Satish L, McLaughlin MM, Dees A, Tompkins-Rhoades C, et al. Administration of adipose-derived stem cells enhances vascularity, induces collagen deposition, and dermal adipogenesis in burn wounds. Burns. 2016;42:1212–22.

    Article  PubMed  Google Scholar 

  50. Strong AL, Bowles AC, MacCrimmon CP, Frazier TP, Lee SJ, Wu X, et al. Adipose stromal cells repair pressure ulcers in both young and elderly mice: potential role of Adipogenesis in skin repair. Stem Cells Transl Med. 2015;4:632–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Park IS, Chung PS, Ahn JC. Enhanced angiogenic effect of adipose-derived stromal cell spheroid with low-level light therapy in hind limb ischemia mice. Biomaterials. 2014;35:9280–9.

    Article  PubMed  CAS  Google Scholar 

  52. Sun M, He Y, Zhou T, Zhang P, Gao J, Lu F. Adipose extracellular matrix/stromal vascular fraction gel secretes Angiogenic factors and enhances skin wound healing in a murine model. Biomed Res Int. 2017;2017:1–11.

    Google Scholar 

  53. Feng J, Mineda K, Wu SH, Mashiko T, Doi K, Kuno S, et al. An injectable non-cross-linked hyaluronic-acid gel containing therapeutic spheroids of human adipose-derived stem cells. Sci Rep. 2017;7:1548.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Gentile P, Scioli MG, Bielli A, Orlandi A, Cervelli V. Concise review: the use of adipose-derived stromal vascular fraction cells and platelet rich plasma in regenerative plastic surgery. Stem Cells. 2017;35:117–34.

    Article  PubMed  Google Scholar 

  55. Matsumoto D, Sato K, Gonda K, Takaki Y, Shigeura T, Sato T, et al. Cell-assisted Lipotransfer: supportive use of human adipose-derived cells for soft tissue augmentation with Lipoinjection. Tissue Eng. 2006;12:3375–82.

    Article  PubMed  CAS  Google Scholar 

  56. Zielins ER, Brett EA, Longaker MT, Wan DC. Autologous fat grafting: the science behind the surgery. Aesthetic Surg J. 2016;36:488–96.

    Article  Google Scholar 

  57. Kølle SFT, Fischer-Nielsen A, Mathiasen AB, Elberg JJ, Oliveri RS, Glovinski PV, et al. Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial. Lancet. 2013;382:1113–20.

    Article  PubMed  Google Scholar 

  58. Gentile P, Orlandi A, Scioli MG, Di Pasquali C, Bocchini I, Curcio CB, et al. A comparative translational study: the combined use of enhanced stromal vascular fraction and platelet-rich plasma improves fat grafting maintenance in breast reconstruction. Stem Cells Transl Med. 2012;1:341–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Gentile P, De Angelis B, Pasin M, et al. Adipose-derived stromal vascular fraction cells and platelet-rich plasma: basic and clinical evaluation for cell-based therapies in patients with scars on the face. J Craniofac Surg. 2014;25:267–72.

    Article  PubMed  Google Scholar 

  60. Rigotti G, Charles-De-Sá L, Gontijo-De-Amorim NF, Takiya CM, Amable PR, Borojevic R, et al. Expanded stem cells, stromal-vascular fraction, and platelet-rich plasma enriched fat: comparing results of different facial rejuvenation approaches in a clinical trial. Aesthetic Surg J. 2016;36:261–70.

    Article  Google Scholar 

  61. Sasaki GH. The safety and efficacy of cell-assisted fat grafting to traditional fat grafting in the anterior mid-face: an indirect assessment by 3D imaging. Aesthet Plast Surg. 2015;39:833–46.

    Article  Google Scholar 

  62. Lee HC, An SG, Lee HW, Park JS, Cha KS, Hong TJ, et al. Safety and effect of adipose tissue-derived stem cell implantation in patients with critical limb ischemia: a pilot study. Circ J. 2012;76:1750–60.

    Article  PubMed  CAS  Google Scholar 

  63. Bura A, Planat-Benard V, Bourin P, Silvestre JS, Gross F, Grolleau JL, et al. Phase I trial: the use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia. Cytotherapy. 2014;16:245–57.

    Article  PubMed  CAS  Google Scholar 

  64. Carstens MH, Gómez A, Cortés R, Turner E, Pérez C, Ocon M, et al. Non-reconstructable peripheral vascular disease of the lower extremity in ten patients treated with adipose-derived stromal vascular fraction cells. Stem Cell Res. 2017;18:14–21.

    Article  PubMed  Google Scholar 

  65. Rheinwatd JG, Green H. Seria cultivation of strains of human epidemal keratinocytes: the formation keratinizin colonies from single cell is. Cell. 1975;6:331–43.

    Article  Google Scholar 

  66. Green H, Kehinde O, Thomas J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci U S A. 1979;76:5665–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Souza CMCO, Mesquita LAF, Souza D, Irioda AC, Francisco JC, Souza CF, et al. Regeneration of skin tissue promoted by mesenchymal stem cells seeded in nanostructured membrane. Transplant Proc Elsevier. 2014;46:1882–6.

    Article  CAS  Google Scholar 

  68. •• Minjuan W, Jun X, Shiyun S, Sha X, Haitao N, Yue W, Kaihong J (2016) Hair follicle morphogenesis in the treatment of mouse full-thickness skin defects using composite human acellular amniotic membrane and adipose derived mesenchymal stem cells. Stem Cells Int 2016;2016:1–7. Dermagrafts used clinically currently lack complex tissue structures, such as hair follicles and sweat glands. This study found that adipose-derived MSCs were capable of differentiating into hair follicle-like structures.

  69. • Kato Y, Iwata T, Morikawa S, Yamato M, Okano T, Uchigata Y. Allogeneic transplantation of an adipose-derived stem cell sheet combined with artificial skin accelerates wound healing in a rat wound model of type 2 diabetes and obesity. Diabetes. 2015;64:2723–34. Study demonstrated that allogeneic ASCs accelerated wound healing in diabetic foot ulcers through both direct and indirect actions

    Article  PubMed  CAS  Google Scholar 

  70. Flynn LE. The use of decellularized adipose tissue to provide an inductive microenvironment for the adipogenic differentiation of human adipose-derived stem cells. Biomaterials. 2010;31:4715–24.

    Article  PubMed  CAS  Google Scholar 

  71. Huang SPSMMSP, Hsu CCC, Chang SCC, Wang CHH, Deng SCC, Dai NTT, et al. Adipose-derived stem cells seeded on acellular dermal matrix grafts enhance wound healing in a murine model of a full-thickness defect. Ann Plast Surg. 2012;69:656–62.

    Article  PubMed  CAS  Google Scholar 

  72. Nie C, Zhang G, Yang D, Liu T, Liu D, Xu J, et al. Targeted delivery of adipose-derived stem cells via acellular dermal matrix enhances wound repair in diabetic rats. J Tissue Eng Regen Med. 2015;9:224–35.

    Article  PubMed  CAS  Google Scholar 

  73. Adams WP, Toriumi DM, Van Natta BW. Clinical use of GalaFLEX in facial and breast cosmetic plastic surgery. Aesthetic Surg J. 2016;36:S23–32.

    Article  Google Scholar 

  74. Lequeux C, Rodriguez J, Boucher F, Rouyer O, Damour O, Mojallal A, et al. In vitro and in vivo biocompatibility, bioavailability and tolerance of an injectable vehicle for adipose-derived stem/stromal cells for plastic surgery indications. J Plast Reconstr Aesthetic Surg. 2015;68:1491–7.

    Article  Google Scholar 

  75. Jin USS, Hong KYY, il HY-I. Effect of adipose-derived stem cells on acellular dermal matrix engraftment in a rabbit model of breast reconstruction. J Plast Reconstr Aesthetic Surg. 2017;70:806–13.

    Article  Google Scholar 

  76. Lin YC, Grahovac T, Oh SJ, Ieraci M, Rubin JP, Marra KG. Evaluation of a multi-layer adipose-derived stem cell sheet in a full-thickness wound healing model. Acta Biomater. 2013;9:5243–50.

    Article  PubMed  CAS  Google Scholar 

  77. Kim YM, Oh SH, Choi JS, Lee S, Ra JC, Lee JH, et al. Adipose-derived stem cell-containing hyaluronic acid/alginate hydrogel improves vocal fold wound healing. Laryngoscope. 2014;124:64–72.

    Article  CAS  Google Scholar 

  78. Xu W, Hu R, Fan E, Han D. Adipose-derived mesenchymal stem cells in collagen-hyaluronic acid gel composite scaffolds for vocal fold regeneration. Ann Otol Rhinol Laryngol. 2011;120:123–30.

    Article  PubMed  Google Scholar 

  79. Hu R, Ling W, Xu W, Han D. Fibroblast-like cells differentiated from adipose-derived mesenchymal stem cells for vocal fold wound healing. PLoS One. 2014;9:e92676.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Garg RK, Rennert RC, Duscher D, Sorkin M, Kosaraju R, Auerbach LJ, et al. Capillary force seeding of hydrogels for adipose-derived stem cell delivery in wounds. Stem Cells Transl Med. 2014;3:1079–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Zonari A, Martins TMM, Paula ACC, Boeloni JN, Novikoff S, Marques AP, et al. Polyhydroxybutyrate-co-hydroxyvalerate structures loaded with adipose stem cells promote skin healing with reduced scarring. Acta Biomater. 2015;17:170–81.

    Article  PubMed  CAS  Google Scholar 

  82. Lam MT, Nauta A, Meyer NP, Wu JC, Longaker MT. Effective delivery of stem cells using an extracellular matrix patch results in increased cell survival and proliferation and reduced scarring in skin wound healing. Tissue Eng Part A. 2013;19:738–47.

    Article  PubMed  CAS  Google Scholar 

  83. Wang L, Johnson JA, Zhang Q, Beahm EK. Combining decellularized human adipose tissue extracellular matrix and adipose-derived stem cells for adipose tissue engineering. Acta Biomater. 2013;9:8921–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Bayati V, Abbaspour MRR, Dehbashi FNN, Neisi N, Hashemitabar M. A dermal equivalent developed from adipose-derived stem cells and electrospun polycaprolactone matrix: an in vitro and in vivo study. Anat Sci Int. 2017;92:509–20.

    Article  PubMed  CAS  Google Scholar 

  85. Wang JQ, Fan J, Gao JH, Zhang C, Bai SL. Comparison of in vivo adipogenic capabilities of two different extracellular matrix microparticle scaffolds. Plast Reconstr Surg. 2013;131:174e–87e.

    Article  PubMed  CAS  Google Scholar 

  86. Kato Y, Iwata T, Washio K, Yoshida T, Kuroda H, Morikawa S, et al. Creation and transplantation of an Adipose-derived Stem Cell (ASC) sheet in a diabetic wound-healing model. J Vis Exp. 2017. https://doi.org/10.3791/54539.

  87. Fuentes-Julián S, Arnalich-Montiel F, Jaumandreu L, Leal M, Casado A, García-Tuñon I, et al. Adipose-derived mesenchymal stem cell administration does not improve corneal graft survival outcome. PLoS One. 2015;10:e0117945.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Wu W, Niklason L, Steinbacher DM. The effect of age on human adipose-derived stem cells. Plast Reconstr Surg. 2013;131:27–37.

    Article  PubMed  CAS  Google Scholar 

  89. Alt EU, Senst C, Murthy SN, Slakey DP, Dupin CL, Chaffin AE, et al. Aging alters tissue resident mesenchymal stem cell properties. Stem Cell Res. 2012;8:215–25.

    Article  PubMed  CAS  Google Scholar 

  90. Duscher D, Rennert RC, Januszyk M, et al. Aging disrupts cell subpopulation dynamics and diminishes the function of mesenchymal stem cells. Sci Rep. 2014;4:7144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Cronk SM, Kelly-Goss MR, Ray HC, Mendel TA, Hoehn KL, Bruce AC, et al. Adipose-derived stem cells from diabetic mice show impaired vascular stabilization in a murine model of diabetic retinopathy. Stem Cells Transl Med. 2015;4:459–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Chiu Y-J, Yang J-S, Hsu H-S, Tsai C-H, Ma H. Adipose-derived stem cell conditioned medium attenuates cisplatin-triggered apoptosis in tongue squamous cell carcinoma. Oncol Rep. 2018;39:651–8.

    PubMed  Google Scholar 

  93. Harris WM, Zhang P, Plastini M, Ortiz T, Kappy N, Benites J, et al. Evaluation of function and recovery of adipose-derived stem cells after exposure to paclitaxel. Cytotherapy. 2017;19:211–21.

    Article  PubMed  CAS  Google Scholar 

  94. Gong JH, Dong JY, Xie T, Lu SL. The influence of AGEs environment on proliferation, apoptosis, homeostasis, and endothelial cell differentiation of human adipose stem cells. Int J Low Extrem Wounds. 2017;16:94–103.

    Article  PubMed  CAS  Google Scholar 

  95. Lopez MJ, McIntosh KR, Spencer ND, Borneman JN, Horswell R, Anderson P, et al. Acceleration of spinal fusion using syngeneic and allogeneic adult adipose derived stem cells in a rat model. J Orthop Res. 2009;27:366–73.

    Article  PubMed  PubMed Central  Google Scholar 

  96. McIntosh KR, Lopez MJ, Borneman JN, Spencer ND, Anderson PA, Gimble JM. Immunogenicity of allogeneic adipose-derived stem cells in a rat spinal fusion model. Tissue Eng Part A. 2009;15:2677–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Barbara Gawronska-Kozak, the staff of LaCell LLC, and the members of the Center for Stem Cell Research and Regenerative Medicine at Tulane University for their input and discussions during the preparation of this review article.

Author information

Authors and Affiliations

Authors

Contributions

M.E.M., T.A.B., and J.M.G. researched data for the article and wrote the article. M.E.M., T.A.B., J.B., T.F., X.W., B.A.B, and J.M.G. made substantial contributions to discussions of the content and final revision of the manuscript. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Michelle E. McCarthy.

Ethics declarations

Conflict of Interest

J.M.G. and X.W. are co-founders, co-owners and Chief Scientific Officer and Vice President for Research and Development, respectively, of LaCell LLC, a biotechnology company focusing on the clinical translation of stromal-cell and stem-cell science. J.M.G., X.W., and T.F. are the co-founders and co-owners of Obatala Sciences Inc., a biotechnology company focusing on humanized “fat on a chip” as a product for drug discovery where T.F. serves as the President and Chief Executive Officer.

J.M.G. is an inventor on multiple patents relating to adipose cells and products. X.W is about to submit a patent application from LaCell LLC on the use of adipose cells in therapy.

The other authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Artificial Tissues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCarthy, M.E., Brown, T.A., Bukowska, J. et al. Therapeutic Applications for Adipose-Derived Stem Cells in Wound Healing and Tissue Engineering. Curr Stem Cell Rep 4, 127–137 (2018). https://doi.org/10.1007/s40778-018-0125-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40778-018-0125-9

Keywords

Navigation