Advertisement

Current Stem Cell Reports

, Volume 3, Issue 3, pp 181–191 | Cite as

“Sea”-ing Is Believing: In Vivo Imaging of Hematopoietic Stem Cells and Cancer Using Zebrafish

  • Samima Habbsa
  • Mia McKinstry
  • Teresa V. BowmanEmail author
In Vitro and In Vivo Models in Stem Cell Biology (E Scott, Section Editor)
  • 77 Downloads
Part of the following topical collections:
  1. Topical Collection on In Vitro and In Vivo Models in Stem Cell Biology

Abstract

Purpose of Review

Communication between cells and their environment regulates their behaviors. Like a naturalist who watches animals to understand them, visualizing cells within their native ecosystems provides clues into how they work. In this review, we discuss recent findings using in vivo imaging in zebrafish to understand the behaviors of hematopoietic stem and progenitor cells (HSPCs) and cancer.

Recent Findings

Recent studies visualizing the birth and migration of HSPCs throughout development and adulthood have revealed the contributions of signals from somites, immune cells, and stromal cells in modulating HSPC fate decisions. New studies in zebrafish cancer have also revealed the earliest initiation of tumorigenesis, the complex interplay of heterogenous tumor cells with each other and their environment, and how these interactions influence tumor migration and metastasis.

Summary

These insights aid our understanding of cell-cell communications that are critical for making advances in regenerative medicine and cancer therapeutics.

Keywords

Zebrafish Hematopoietic stem cells Cancer Imaging Transplantation Development 

Notes

Compliance with Ethical Standards

Conflict of Interest

Samima Habbsa, Mia McKinstry, and Teresa V. Bowman declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    White RM, Sessa A, Burke C, Bowman T, LeBlanc J, Ceol C, et al. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell. 2008;2(2):183–9. doi: 10.1016/j.stem.2007.11.002.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Zhang P, Liu F. In vivo imaging of hematopoietic stem cell development in the zebrafish. Front Med. 2011;5(3):239–47. doi: 10.1007/s11684-011-0123-0.CrossRefPubMedGoogle Scholar
  3. 3.
    Ignatius MS, Hayes M, Langenau DM. In vivo imaging of cancer in zebrafish. Adv Exp Med Biol. 2016;916:219–37. doi: 10.1007/978-3-319-30654-4_10.CrossRefPubMedGoogle Scholar
  4. 4.
    Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. 2013;31(3):227–9. doi: 10.1038/nbt.2501.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kawakami K, Takeda H, Kawakami N, Kobayashi M, Matsuda N, Mishina M. A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell. 2004;7(1):133–44. doi: 10.1016/j.devcel.2004.06.005.CrossRefPubMedGoogle Scholar
  6. 6.
    Robertson AL, Avagyan S, Gansner JM, Zon LI. Understanding the regulation of vertebrate hematopoiesis and blood disorders—big lessons from a small fish. FEBS Lett. 2016;590(22):4016–33. doi: 10.1002/1873-3468.12415.CrossRefPubMedGoogle Scholar
  7. 7.
    Butko E, Distel M, Pouget C, Weijts B, Kobayashi I, Ng K, et al. Gata2b is a restricted early regulator of hemogenic endothelium in the zebrafish embryo. Development. 2015;142(6):1050–61. doi: 10.1242/dev.119180.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kalev-Zylinska ML, Horsfield JA, Flores MV, Postlethwait JH, Vitas MR, Baas AM, et al. Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis. Development. 2002;129(8):2015–30.PubMedGoogle Scholar
  9. 9.
    Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell. 2008;132(4):631–44. doi: 10.1016/j.cell.2008.01.025.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Taoudi S, Medvinsky A. Functional identification of the hematopoietic stem cell niche in the ventral domain of the embryonic dorsal aorta. Proc Natl Acad Sci U S A. 2007;104(22):9399–403. doi: 10.1073/pnas.0700984104.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zovein AC, Hofmann JJ, Lynch M, French WJ, Turlo KA, Yang Y, et al. Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell. 2008;3(6):625–36. doi: 10.1016/j.stem.2008.09.018.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Boisset JC, van Cappellen W, Andrieu-Soler C, Galjart N, Dzierzak E, Robin C. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature. 2010;464(7285):116–20. doi: 10.1038/nature08764.CrossRefPubMedGoogle Scholar
  13. 13.
    Lam EY, Chau JY, Kalev-Zylinska ML, Fountaine TM, Mead RS, Hall CJ, et al. Zebrafish runx1 promoter-EGFP transgenics mark discrete sites of definitive blood progenitors. Blood. 2009;113(6):1241–9. doi: 10.1182/blood-2008-04-149898.CrossRefPubMedGoogle Scholar
  14. 14.
    Bertrand JY, Chi NC, Santoso B, Teng S, Stainier DY, Traver D. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature. 2010;464(7285):108–11. doi: 10.1038/nature08738.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lin HF, Traver D, Zhu H, Dooley K, Paw BH, Zon LI, et al. Analysis of thrombocyte development in CD41-GFP transgenic zebrafish. Blood. 2005;106(12):3803–10. doi: 10.1182/blood-2005-01-0179.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Jin SW, Beis D, Mitchell T, Chen JN, Stainier DY. Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development (Cambridge, England). 2005;132(23):5199–209. doi: 10.1242/dev.02087.CrossRefGoogle Scholar
  17. 17.
    Lam EY, Hall CJ, Crosier PS, Crosier KE, Flores MV. Live imaging of Runx1 expression in the dorsal aorta tracks the emergence of blood progenitors from endothelial cells. Blood. 2010;116(6):909–14. doi: 10.1182/blood-2010-01-264382.CrossRefPubMedGoogle Scholar
  18. 18.
    Kissa K, Herbomel P. Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature. 2010;464(7285):112–5. doi: 10.1038/nature08761.CrossRefPubMedGoogle Scholar
  19. 19.
    North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM, et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature. 2007;447(7147):1007–U7. doi: 10.1038/nature05883.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    • Tamplin OJ, Durand EM, Carr LA, Childs SJ, Hagedorn EJ, Li P, et al. Hematopoietic stem cell arrival triggers dynamic remodeling of the perivascular niche. Cell. 2015;160(1–2):241–52. doi: 10.1016/j.cell.2014.12.032. This article describes the dynamic interactions among endothelial cells, stromal cells and HSPCs within the CHT. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhang XY, Rodaway AR. SCL-GFP transgenic zebrafish: in vivo imaging of blood and endothelial development and identification of the initial site of definitive hematopoiesis. Dev Biol. 2007;307(2):179–94. doi: 10.1016/j.ydbio.2007.04.002.CrossRefPubMedGoogle Scholar
  22. 22.
    Lawson ND, Weinstein BM. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol. 2002;248(2):307–18. doi: 10.1006/dbio.2002.0711.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhu H, Traver D, Davidson AJ, Dibiase A, Thisse C, Thisse B, et al. Regulation of the lmo2 promoter during hematopoietic and vascular development in zebrafish. Dev Biol. 2005;281(2):256–69. doi: 10.1016/j.ydbio.2005.01.034.CrossRefPubMedGoogle Scholar
  24. 24.
    Seger C, Hargrave M, Wang XG, Chai RJ, Elworthy S, Ingham PW. Analysis of Pax7 expressing myogenic cells in zebrafish muscle development, injury, and models of disease. Dev Dynam. 2011;240(11):2440–51. doi: 10.1002/dvdy.22745.CrossRefGoogle Scholar
  25. 25.
    •• Nguyen PD, Hollway GE, Sonntag C, Miles LB, Hall TE, Berger S, et al. Haematopoietic stem cell induction by somite-derived endothelial cells controlled by meox1. Nature. 2014;512(7514):314–8. doi: 10.1038/nature13678. This article demonstrates that cells derived from the somite contribute to the dorsal aorta and regulate HSPC production. CrossRefPubMedGoogle Scholar
  26. 26.
    • Travnickova J, Tran Chau V, Julien E, Mateos-Langerak J, Gonzalez C, Lelievre E, et al. Primitive macrophages control HSPC mobilization and definitive haematopoiesis. Nat Commun. 2015;(6):6227. doi: 10.1038/ncomms7227. This article describes how macrophages assist the migration of HSPCs out of the dorsal aorta region so they can migrate to the CHT.
  27. 27.
    Blackburn JS, Liu S, Wilder JL, Dobrinski KP, Lobbardi R, Moore FE, et al. Clonal evolution enhances leukemia-propagating cell frequency in T cell acute lymphoblastic leukemia through Akt/mTORC1 pathway activation. Cancer Cell. 2014;25(3):366–78. doi: 10.1016/j.ccr.2014.01.032.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    • Ignatius MS, Chen E, Elpek NM, Fuller AZ, Tenente IM, Clagg R, et al. In vivo imaging of tumor-propagating cells, regional tumor heterogeneity, and dynamic cell movements in embryonal rhabdomyosarcoma. Cancer Cell. 2012;21(5):680–93. doi: 10.1016/j.ccr.2012.03.043. This article demonstrates tumor cell cooperativity in ERMS. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Cumano A, Dieterlen-Lievre F, Godin I. Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell. 1996;86(6):907–16.CrossRefPubMedGoogle Scholar
  30. 30.
    Medvinsky A, Dzierzak E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell. 1996;86(6):897–906.CrossRefPubMedGoogle Scholar
  31. 31.
    Cormier F, Dieterlen-Lievre F. The wall of the chick embryo aorta harbours M-CFC, G-CFC, GM-CFC and BFU-E. Development. 1988;102(2):279–85.PubMedGoogle Scholar
  32. 32.
    Bertrand JY, Giroux S, Golub R, Klaine M, Jalil A, Boucontet L, et al. Characterization of purified intraembryonic hematopoietic stem cells as a tool to define their site of origin. Proc Natl Acad Sci U S A. 2005;102(1):134–9. doi: 10.1073/pnas.0402270102.CrossRefPubMedGoogle Scholar
  33. 33.
    Maroto M, Bone RA, Dale JK. Somitogenesis. Development (Cambridge, England). 2012;139(14):2453–6. doi: 10.1242/dev.069310.CrossRefGoogle Scholar
  34. 34.
    Hatta K, Tsujii H, Omura T. Cell tracking using a photoconvertible fluorescent protein. Nat Protoc. 2006;1(2):960–7. doi: 10.1038/nprot.2006.96.CrossRefPubMedGoogle Scholar
  35. 35.
    Childs S, Chen JN, Garrity DM, Fishman MC. Patterning of angiogenesis in the zebrafish embryo. Development (Cambridge, England). 2002;129(4):973–82.Google Scholar
  36. 36.
    Karpova D, Bonig H. Concise review: CXCR4/CXCL12 signaling in immature hematopoiesis—lessons from pharmacological and genetic models. Stem Cells. 2015;33(8):2391–9. doi: 10.1002/stem.2054.CrossRefPubMedGoogle Scholar
  37. 37.
    Kissa K, Murayama E, Zapata A, Cortes A, Perret E, Machu C, et al. Live imaging of emerging hematopoietic stem cells and early thymus colonization. Blood. 2008;111(3):1147–56. doi: 10.1182/blood-2007-07-099499.CrossRefPubMedGoogle Scholar
  38. 38.
    Murayama E, Kissa K, Zapata A, Mordelet E, Briolat V, Lin H-F, et al. Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development. Immunity. 2006;25(6):963–75. doi: 10.1016/j.immuni.2006.10.015.CrossRefPubMedGoogle Scholar
  39. 39.
    Traver D, Paw BH, Poss KD, Penberthy WT, Lin S, Zon LI. Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat Immunol. 2003;4(12):1238–46. doi: 10.1038/ni1007.CrossRefPubMedGoogle Scholar
  40. 40.
    Curado S, Anderson RM, Jungblut B, Mumm J, Schroeter E, Stainier DY. Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev dyn Off Publ Am Assoc Anatomists. 2007;236(4):1025–35. doi: 10.1002/dvdy.21100.Google Scholar
  41. 41.
    Kozlowski DJ, Murakami T, Ho RK, Weinberg ES. Regional cell movement and tissue patterning in the zebrafish embryo revealed by fate mapping with caged fluorescein. Biochem Cell Biol. 1997;75(5):551–62.CrossRefPubMedGoogle Scholar
  42. 42.
    Zhang YY, Jin H, Li L, Qin FXF, Wen ZL. cMyb regulates hematopoietic stem/progenitor cell mobilization during zebrafish hematopoiesis. Blood. 2011;118(15):4093–101. doi: 10.1182/blood-2011-03-342501.CrossRefPubMedGoogle Scholar
  43. 43.
    Aiuti A, Turchetto L, Cota M, Cipponi A, Brambilla A, Arcelloni C, et al. Human CD34(+) cells express CXCR4 and its ligand stromal cell-derived factor-1. Implications for infection by T-cell tropic human immunodeficiency virus. Blood. 1999;94(1):62–73.PubMedGoogle Scholar
  44. 44.
    Li P, Lahvic JL, Binder V, Pugach EK, Riley EB, Tamplin OJ, et al. Epoxyeicosatrienoic acids enhance embryonic haematopoiesis and adult marrow engraftment. Nature. 2015;523(7561):468–71. doi: 10.1038/nature14569.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Eggel A, Wyss-Coray T. A revival of parabiosis in biomedical research. Swiss Med Wkly. 2014;144:w13914. doi: 10.4414/smw.2014.13914.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Demy DL, Ranta Z, Giorgi JM, Gonzalez M, Herbomel P, Kissa K. Generating parabiotic zebrafish embryos for cell migration and homing studies. Nat Methods. 2013;10(3):256–8. doi: 10.1038/Nmeth.2362.CrossRefPubMedGoogle Scholar
  47. 47.
    Anderson H, Patch T, Reddy P, Hagedorn E, Tamplin OJ, Bauer DE, et al. Hematopoietic stem cells develop in the absence of endothelial cadherin 5 expression. Blood. 2015;126(23):2811–20.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Hagedorn EJ, Cillis JL, Curley CR, Patch TC, Li B, Blaser BW, et al. Generation of parabiotic zebrafish embryos by surgical fusion of developing blastulae. J Vis Exp. 2016;112 doi: 10.3791/54168.
  49. 49.
    Purton LE, Scadden DT. Limiting factors in murine hematopoietic stem cell assays. Cell Stem Cell. 2007;1(3):263–70. doi: 10.1016/j.stem.2007.08.016.CrossRefPubMedGoogle Scholar
  50. 50.
    Li P, White RM, Zon LI. Transplantation in zebrafish. Methods Cell Biol. 2011;105:403–17. doi: 10.1016/B978-0-12-381320-6.00017-5.CrossRefPubMedGoogle Scholar
  51. 51.
    Chen CH, Durand E, Wang JH, Zon LI, Poss KD. Zebraflash transgenic lines for in vivo bioluminescence imaging of stem cells and regeneration in adult zebrafish. Development (Cambridge, England). 2013;140(24):4988–97. doi: 10.1242/dev.102053.CrossRefGoogle Scholar
  52. 52.
    Astuti Y, Kramer AC, Blake AL, Blazar BR, Tolar J, Taisto ME, et al. A functional bioluminescent zebrafish screen for enhancing hematopoietic cell homing. Stem Cell Rep. 2017;8(1):177–90. doi: 10.1016/j.stemcr.2016.12.004.CrossRefGoogle Scholar
  53. 53.
    Langenau DM, Traver D, Ferrando AA, Kutok JL, Aster JC, Kanki JP, et al. Myc-induced T cell leukemia in transgenic zebrafish. Science. 2003;299(5608):887–90. doi: 10.1126/science.1080280.CrossRefPubMedGoogle Scholar
  54. 54.
    •• Kaufman CK, Mosimann C, Fan ZP, Yang S, Thomas AJ, Ablain J, et al. A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation. Science. 2016;351(6272):aad2197. doi: 10.1126/science.aad2197. This article provides insight into the earliest initiation of melanoma. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Patton EE, Widlund HR, Kutok JL, Kopani KR, Amatruda JF, Murphey RD, et al. BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol. 2005;15(3):249–54. doi: 10.1016/j.cub.2005.01.031.CrossRefPubMedGoogle Scholar
  56. 56.
    White RM, Cech J, Ratanasirintrawoot S, Lin CY, Rahl PB, Burke CJ, et al. DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature. 2011;471(7339):518–22. doi: 10.1038/nature09882.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell. 2014;14(3):275–91. doi: 10.1016/j.stem.2014.02.006.CrossRefPubMedGoogle Scholar
  58. 58.
    Smith AC, Raimondi AR, Salthouse CD, Ignatius MS, Blackburn JS, Mizgirev IV, et al. High-throughput cell transplantation establishes that tumor-initiating cells are abundant in zebrafish T-cell acute lymphoblastic leukemia. Blood. 2010;115(16):3296–303. doi: 10.1182/blood-2009-10-246488.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Blackburn JS, Liu S, Raimondi AR, Ignatius MS, Salthouse CD, Langenau DM. High-throughput imaging of adult fluorescent zebrafish with an LED fluorescence macroscope. Nat Protoc. 2011;6(2):229–41. doi: 10.1038/nprot.2010.170.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Gutierrez A, Grebliunaite R, Feng H, Kozakewich E, Zhu S, Guo F, et al. Pten mediates Myc oncogene dependence in a conditional zebrafish model of T cell acute lymphoblastic leukemia. J Exp Med. 2011;208(8):1595–603. doi: 10.1084/jem.20101691.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Graubert TA, Mardis ER. Genomics of acute myeloid leukemia. Cancer J. 2011;17(6):487–91. doi: 10.1097/PPO.0b013e31823c5652.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Eklund L, Bry M, Alitalo K. Mouse models for studying angiogenesis and lymphangiogenesis in cancer. Mol Oncol. 2013;7(2):259–82. doi: 10.1016/j.molonc.2013.02.007.CrossRefPubMedGoogle Scholar
  63. 63.
    Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481(7381):306–13. doi: 10.1038/nature10762.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Tsuji T, Ibaragi S, Shima K, Hu MG, Katsurano M, Sasaki A, et al. Epithelial-mesenchymal transition induced by growth suppressor p12CDK2-AP1 promotes tumor cell local invasion but suppresses distant colony growth. Cancer Res. 2008;68(24):10377–86. doi: 10.1158/0008-5472.CAN-08-1444.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Chapman A, Fernandez del Ama L, Ferguson J, Kamarashev J, Wellbrock C, Hurlstone A. Heterogeneous tumor subpopulations cooperate to drive invasion. Cell Rep. 2014;8(3):688–95. doi: 10.1016/j.celrep.2014.06.045.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Lam SH, Chua HL, Gong Z, Lam TJ, Sin YM. Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Dev Comp Immunol. 2004;28(1):9–28.CrossRefPubMedGoogle Scholar
  67. 67.
    Carreira S, Goodall J, Denat L, Rodriguez M, Nuciforo P, Hoek KS, et al. Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev. 2006;20(24):3426–39. doi: 10.1101/gad.406406.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Hoek KS, Schlegel NC, Brafford P, Sucker A, Ugurel S, Kumar R, et al. Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell Res. 2006;19(4):290–302. doi: 10.1111/j.1600-0749.2006.00322.x.CrossRefPubMedGoogle Scholar
  69. 69.
    Hoek KS, Eichhoff OM, Schlegel NC, Dobbeling U, Kobert N, Schaerer L, et al. In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res. 2008;68(3):650–6. doi: 10.1158/0008-5472.CAN-07-2491.CrossRefPubMedGoogle Scholar
  70. 70.
    Antonio N, Bonnelykke-Behrndtz ML, Ward LC, Collin J, Christensen IJ, Steiniche T, et al. The wound inflammatory response exacerbates growth of pre-neoplastic cells and progression to cancer. EMBO J. 2015;34(17):2219–36. doi: 10.15252/embj.201490147.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Obenauf AC, Massague J. Surviving at a distance: organ specific metastasis. Trends Cancer. 2015;1(1):76–91. doi: 10.1016/j.trecan.2015.07.009.CrossRefPubMedCentralGoogle Scholar
  72. 72.
    Heilmann S, Ratnakumar K, Langdon EM, Kansler ER, Kim IS, Campbell NR, et al. A quantitative system for studying metastasis using transparent zebrafish. Cancer Res. 2015;75(20):4272–82. doi: 10.1158/0008-5472.CAN-14-3319.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Ghotra VP, He S, de Bont H, van der Ent W, Spaink HP, van de Water B, et al. Automated whole animal bio-imaging assay for human cancer dissemination. PLoS One. 2012;7(2):e31281. doi: 10.1371/journal.pone.0031281.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Arulmozhivarman G, Stoter M, Bickle M, Krater M, Wobus M, Ehninger G, et al. In vivo chemical screen in zebrafish embryos identifies regulators of hematopoiesis using a semiautomated imaging assay. J Biomol Screen. 2016;21(9):956–64. doi: 10.1177/1087057116644163.CrossRefPubMedGoogle Scholar
  75. 75.
    Pan YA, Freundlich T, Weissman TA, Schoppik D, Wang XC, Zimmerman S, et al. Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish. Development. 2013;140(13):2835–46. doi: 10.1242/dev.094631.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Henninger J, Santoso B, Hans S, Durand E, Moore J, Mosimann C, et al. Clonal fate mapping quantifies the number of haematopoietic stem cells that arise during development. Nat Cell Biol. 2017;19(1):17–27. doi: 10.1038/ncb3444.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Samima Habbsa
    • 1
    • 2
  • Mia McKinstry
    • 1
    • 2
  • Teresa V. Bowman
    • 1
    • 2
    • 3
    Email author
  1. 1.Gottesman Institute for Stem Cell Biology and Regenerative MedicineAlbert Einstein College of MedicineBronxUSA
  2. 2.Department of Developmental & Molecular BiologyAlbert Einstein College of MedicineBronxUSA
  3. 3.Department of Medicine (Oncology)Albert Einstein College of MedicineBronxUSA

Personalised recommendations