Advertisement

Current Stem Cell Reports

, Volume 3, Issue 3, pp 164–171 | Cite as

Of Salamanders and Spiny Mice: Common Features of Regeneration and Stem Cells

  • Malcolm MadenEmail author
In Vitro and In Vivo Models in Stem Cell Biology (E Scott, Section Editor)
Part of the following topical collections:
  1. Topical Collection on In Vitro and In Vivo Models in Stem Cell Biology

Abstract

Purpose of Review

This review identifies the salient cellular and molecular features of regeneration of the skin and limbs of salamanders to see whether any of these features are in common with recent reports on the spiny mouse (Acomys), a mammal with some remarkable regenerative behavior. Other reports of mammalian regeneration are also highlighted.

Recent Findings

Mammals have classically been regarded as non-regenerating, but the regeneration of several embryonic and post-natal tissues as well as reports of adult skin and ear hole regeneration have recently been described. Common features of these regenerating systems and those of salamanders are discussed in terms of their immune systems, cytokine responses, matrix composition, and matrix metalloproteinases (MMP) activation as well as the occurrence of blastemas in these diverse organisms. The common involvement of stem cells in regenerating systems is also addressed.

Summary

Mammals may not have lost all their regenerative powers, and a more diverse approach across other new model systems may reveal surprising behavior such as that seen in Acomys, the spiny mouse. Mammalian regenerating tissues share many common features with the champions of regeneration, the salamanders.

Keywords

Axolotl Spiny mouse Acomys Regeneration Skin wounding Blastema 

Notes

Acknowledgments

Unpublished work from the author mentioned in the text was supported by a grant from the W. M. Keck Foundation.

Compliance with Ethical Standards

Conflict of Interest

Malcolm Maden declares that he has no conflict of interest.

Human and Animal Rights

All the reported studies with animal subjects performed by the author have complied with all applicable ethical standards following the guidelines of the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and protocols approved by the Institutional Animal Care and Use Committee at the University of Florida.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Bely AE, Nyberg KG. Evolution of animal regeneration: re-emergence of a field. TIEE. 2009;25:161–70.Google Scholar
  2. 2.
    Larson BJ, Longaker MT, Lorenz HP. Scarless fetal wound healing: a basic science review. Plast Reconstr Surg. 2010;126:1172–80.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ferretti P, Whalley K. Molecular and cellular basis of regeneration and tissue repair. Cell Mol Life Sci. 2008;65:45. doi: 10.1007/s00018-007-7430-2.CrossRefPubMedGoogle Scholar
  4. 4.
    Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, et al. Transient regenerative potential of the neonatal mouse heart. Science. 2011;331:1078–80. doi: 10.1126/science.1200708.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Goss RJ. Deer antlers: regeneration, function and evolution. New York: Academic Press; 1983.Google Scholar
  6. 6.
    Fausto N, Campbell JS, Riehle KJ. Liver Regeneration. Hepatology. 2006;43:45–53.CrossRefGoogle Scholar
  7. 7.
    Matsumoto K, Nagayasu T, Hishikawa Y, Tagawa T, Yamayoshi T, Abo T, et al. Keratinocyte growth factor accelerates compensatory growth in the remaining lung after trilobectomy in rats. J Thorac Cardiovasc Surg. 2009;137:1499–507. doi: 10.1016/j.jtcvs.2008.11.037.CrossRefPubMedGoogle Scholar
  8. 8.
    Slack JM. Developmental biology of the pancreas. Development. 1995;121:1569–80.PubMedGoogle Scholar
  9. 9.
    Fernando WA, Leininger E, Simkin J, Li N, Malcom CA, Sathyamoorthi S, et al. Wound healing and blastema formation in regenerating digit tips of adult mice. Dev Biol. 2011;350:301–10. doi: 10.1016/j.ydbio.2010.11.035.CrossRefPubMedGoogle Scholar
  10. 10.
    Lehoczky JA, Robert B, Tabin CJ. Mouse digit tip regeneration is mediated by fate-restricted progenitor cells. Proc Natl Acad Sci U S A. 2011;108:20609–14. doi: 10.1073/pnas.1118017108.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Rinkevich Y, Lindau P, Ueno H, Longaker MT. Weissman IL germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip. Nature. 2011;476:409–13. doi: 10.1038/nature10346.CrossRefPubMedGoogle Scholar
  12. 12.
    Johnston AP, Yuzwa SA, Carr MJ, Mahmud N, Storer MA, Krause MP, et al. Dedifferentiated schwann cell precursors secreting paracrine factors are required for regeneration of the mammalian digit tip. Cell Stem Cell. 2016;19:433–48. doi: 10.1016/j.stem.2016.06.002.CrossRefPubMedGoogle Scholar
  13. 13.
    Illingworth CM. Trapped fingers and amputated finger tips in children. J Pediatr Surg. 1974;9:853–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Rinkevich Y, Maan ZN, Walmsley GG, Sen SK. Injuries to appendage extremities and digit tips: a clinical and cellular update. Dev Dyn. 2015;244:641–50. doi: 10.1002/dvdy.24265. Review CrossRefPubMedGoogle Scholar
  15. 15.
    Stocum DL. Regenerative Biology and Medicine. Academic Press; 2006.Google Scholar
  16. 16.
    Gonçalves JT, Schafer ST, Gage FH. Adult neurogenesis in the hippocampus: from stem cells to behavior. Cell. 2016;167:897–914. doi: 10.1016/j.cell.2016.10.021.CrossRefPubMedGoogle Scholar
  17. 17.
    Billingham RE, Mangold R, Silvers WK. The neogenesis of skin in the antlers of deer. Ann N Y Acad Sci. 1959;83:491–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Billingham RE, Russell PS. Incomplete wound contracture and the phenomenon of hair neogenesis in rabbits’ skin. Nature. 1956;177:791–2.CrossRefPubMedGoogle Scholar
  19. 19.
    Voronstova MA, Liosner LD. Asexual propogation and regeneration. London: Pergamon Press; 1960.Google Scholar
  20. 20.
    Joseph J, Dyson M. Tissue replacement in the rabbit’s ear. Brit J Surg. 1966;53:372–80.CrossRefPubMedGoogle Scholar
  21. 21.
    • Gawriluk TR, Simkin J, Thompson KL, Biswas SK, Clare-Salzler Z, Kimani JM, et al. Comparative analysis of ear-hole closure identifies epimorphic regeneration as a discrete trait in mammals. Nat Commun. 2016;7:11164. doi: 10.1038/ncomms11164. This study uses a relatively large ear hole assay to determine which mammals can regenerate and which cannot to show that regeneration is an all-or-nothing process. It unites mammalian epimorphic ear regeneration with that in salamanders, newts and zebrafish. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Goss RJ. Why mammals don’t regenerate—or do they? NIPS. 1987;2:112–5.Google Scholar
  23. 23.
    Williams-Boyce PK, Daniel JC. Comparison of ear tissue regeneration in mammals. J Anat. 1986;149:55–63.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Clarke LD, Clark RK, Heber-Katz E. A new murine model for mammalian wound repair and regeneration. Clin Immunol Immunopath. 1998;88:35–45.CrossRefGoogle Scholar
  25. 25.
    Gawronska-Kozak B. Regeneration of the ears of immunodeficient mice: identification and lineage analysis of mesenchymal stem cells. Tissue Eng. 2004;10:1251–65.CrossRefPubMedGoogle Scholar
  26. 26.
    Seifert AW, Kiama SG, Seifert MG, Goheen JR, Palmer TM, Maden M. Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature. 2012;489:561–6.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Brant JO, Yoon JH, Polvadore T, Barbazuk B, Maden M. Cellular events during scar-free healing in the spiny mouse, Acomys. Wound Rep Regen. 2016;24:75–88. doi: 10.1111/wrr.12385.CrossRefGoogle Scholar
  28. 28.
    Seifert AW, Monaghan JR, Voss SR, Maden M. Skin regeneration in adult axolotls: a blueprint for scar-free healing in vertebrates. PLoS One. 2012;7:e32875.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lévesque M, Villiard E, Roy S. Skin wound healing in axolotls: a scarless process. J Exp Zool B Mol Dev Evol. 2010;314:684–97. doi: 10.1002/jez.b.21371.CrossRefPubMedGoogle Scholar
  30. 30.
    Ferris DR, Satoh A, Mandefro B, Cummings GM, Gardiner DM, Rugg EL. Ex vivo generation of a functional and regenerative wound epithelium from axolotl (Ambystoma mexicanum) skin. Devel Growth Differ. 2010;52:715–24.CrossRefGoogle Scholar
  31. 31.
    Mescher AL, Neff AW. Regenerative capacity and the developing immune system. Adv Bochem Engin/Biotechnol. 2005;93:39–66.CrossRefGoogle Scholar
  32. 32.
    Fuzakawa T, Naora Y, Kunieda T, Kubo T. Suppression of the immune response potentiates tadpole tail regeneration during the refractory period. Development. 2009;136:2323–7.CrossRefGoogle Scholar
  33. 33.
    Gawronska-Kozak B, Bogacki M, Rim J-S, Monroe WT, Manuel JA. Scarless skin repair in immunodeficient mice. Wound Rep Regen. 2006;14:265–76.CrossRefGoogle Scholar
  34. 34.
    Brant JO, Lopez M-C, Baker HV, Barbazuk WB, Maden MC. A comparative analysis of gene expression profiles during skin regeneration in Mus and Acomys. PLoS One. 2015;10:e0142931.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gourevitch D, Clark L, Chen P, Seitz A, Samulewicz SJ, Heber-Katz E. Matrix metalloproteinase activity correlates with blastema formation in the regenerating MRL mouse ear hole model. Dev Dynam. 2003;226:377–87.CrossRefGoogle Scholar
  36. 36.
    • Godwin JW, Pinto AR, Rosenthal NA. Macrophages are required for salamander limb regeneration. Proc Natl Acad Sci U S A. 2013;110:9415–20. This study showed that despite the embryonic-like immune systems in axolotls epimorphic regeneration of the limb cannot take place without macrophages. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Simpson DR, Ross R. The neutrophilic leukocyte in wound repair: a study with antineutrophil serum. J Clin Invest. 1971;51:2009–23.CrossRefGoogle Scholar
  38. 38.
    Dovi JV, He LK, DiPietro LA. Accelerated wound closure in neutrophil-depleted mice. J Leukoc Biol. 2003;73:448–55.CrossRefPubMedGoogle Scholar
  39. 39.
    Martin P, D'Souza D, Martin J, Grose R, Cooper L, Maki R, et al. Wound healing in the PU.1 null mouse—tissue repair is not dependent on inflammatory cells. Curr Biol. 2003;13:1122–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Ferreira AM, Takagawa S, Fresco R, Zhu X, Varga J, DiPetro LA. Dimished induction of skin fibrosis in mice with MCP-1 deficiency. J Invest Dermatol. 2006;126:1900–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Wong VW, Rustad KC, Akaishi S, Sorkin M, Glotzbach JP, Januszyk M, et al. Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nature Med. 2012;18:148–52.CrossRefGoogle Scholar
  42. 42.
    Rafail S, Kourtzelis I, Foukas PG, Markiewski MM, DeAngelis RA, Guariento M, et al. Complement deficiency promotes cutaneous wound healing in mice. J Immunol. 2015;194:1285–91.CrossRefPubMedGoogle Scholar
  43. 43.
    Pedroza M, Schneider DJ, Karmouty-Quintana H, Coote J, Shaw S, Corrigan R, et al. Interleukin-6 contributes to inflammation and remodeling in a model of adenosine mediated lung injury. PLoS One. 2011;6:e22667.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Lemarie J, Boufenzer A, Derive M, Sebastien G. The Triggering Receptor Expressed on Myeloid cells-1: a new player during myocardial infarction. Pharmacol Res. 2015;100:261–5.CrossRefGoogle Scholar
  45. 45.
    Wood S, Jayaraman V, Huelsmann EJ, Bonish B, Burgad D, Sivaramakrishnan G, et al. Pro-inflammatory chemokine CCL2 (MCP-1) promotes healing in diabetic wounds by restoring the macrophage response. PLoS One. 2014;9:e91574. doi: 10.1371/journal.pone.0091574.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    •• Aurora AB, Porrello ER, Tan W, Mahmoud AI, Hill JA, Bassel-Duby R, et al. Macrophages are required for neonatal heart regeneration. J Clin Invest. 2014;124:1382–92. doi: 10.1172/JCI72181. A previous study showed amazingly that the neonatal mouse heart can regenerate and this follow-up showed that macrophages are required for this regenerative process. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83:835–70.PubMedGoogle Scholar
  48. 48.
    Sullivan KM, Lorenz HP, Meuli M, Lin RY, Adzick NS. A model of scarless human fetal wound repair is deficient in transforming growth factor beta. J Pedriatr Surg. 1994;30:198–203.CrossRefGoogle Scholar
  49. 49.
    Shah M, Foreman DM, Ferguson MW. Neurtralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous wounds reduces scarring. J Cell Sci. 1995;108:985–1002.PubMedGoogle Scholar
  50. 50.
    Lévesque M, Gatien S, Finnson K, Desmeules S, Villiard E, Pilote M, et al. Transforming growth factor: beta signaling is essential for limb regeneration in axolotls. PLoS One. 2007;2:e1227.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Denis JF, Sader F, Gatien S, Villiard E, Philip A, Roy S. Activation of Smad2 but not Smad3 is required to mediate TGF-β signaling during axolotl limb regeneration. Development. 2016;143:3481–90. doi: 10.1242/dev.131466.CrossRefPubMedGoogle Scholar
  52. 52.
    Godwin J, Kuriatis D, Rosenthal N. Extracellular matrix considerations for scar-free repair and regeneration: insights from regenerative diversity among vertebrates. Int J Biochem & Cell Biol. 2014;56:47–55.CrossRefGoogle Scholar
  53. 53.
    Calve S, Odelberg SJ, Simon H-G. A transitional extracellular matrix instructs cell behavior during muscle regeneration. Dev Biol. 2010;344:259–71.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Longaker MT, Chiu ES, Adzick NS, Stern M, Harrison MR, Stern R. Studies in fetal wound healing. V. A prolonged presence of hyaluronic acid characterizes fetal wound fluid. Ann Surg. 1991;213:292–6.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Mercer SE, Odelberg SJ, Simon H-G. A dynamic spatiotemporal extracellular matrix facilitates epicardial-mediated vertebrate heart regeneration. Dev Biol. 2013;382:457–69.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Mercer SE, Cheng CH, Atkinson DL, Krcmery J, Guzman CE, Kent DT, et al. Multi-tissue microarray analysis identifies a molecular signature of regeneration. PLoS One. 2012;7:e52375.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Vinarsky V, Atkinson DL, Stevenson TJ, Keating MT, Odelberg SJ. Normal newt limb regeneration requires matrix metalloproteinase function. Dev Biol. 2005;279:86–98.CrossRefPubMedGoogle Scholar
  58. 58.
    Dang CM, Beanes SR, Lee H, Zhang X, Soo C, Ting K. Scarless fetal wounds are associated with an increased matrix metalloproteinase-to-tissue-derived inhibitor of metalloproteinase ratio. Plast Reconstr Surg. 2003;111:2273–85.CrossRefPubMedGoogle Scholar
  59. 59.
    Yang EV, Gardiner DM, Carlson MR, Nugas CA, Bryant SV. Expression of Mmp-9 and related matrix metalloproteinase genes during axolotl limb regeneration. Dev Dyn. 1999;216:2–9.CrossRefPubMedGoogle Scholar
  60. 60.
    Morrison JI, Loof S, He P, Simon A. Salamander limb regeneration involved the activation of a multipotent skeletal muscle satellite cell population. J Cell Biol. 2006;172:433–40.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Sandoval-Guzmán T, Wang H, Khattak S, Schuez M, Roensch K, Nacu E, et al. Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species. Cell Stem Cell. 2014;14:174–87. doi: 10.1016/j.stem.2013.11.007.CrossRefPubMedGoogle Scholar
  62. 62.
    Gardiner DM, Muneoka K, Bryant SV. The migration of dermal cells during blastema formation in axolotls. Dev Biol. 1986;118:488–93.CrossRefPubMedGoogle Scholar
  63. 63.
    Kragl M, Knapp D, Nacu E, Khattak S, Maden M, Epperlein HH, et al. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature. 2009;460:60–5. doi: 10.1038/nature08152.CrossRefPubMedGoogle Scholar
  64. 64.
    Stocum DL, Dearlove GE. Epidermal-mesodermal interaction during morphogenesis of the limb regeneration blastema in larval salamanders. J Exp Zool. 1972;181:49–61.CrossRefGoogle Scholar
  65. 65.
    Takeo M, Chou WC, Sun Q, Lee W, Rabbani P, Loomis C, et al. Wnt activation in nail epithelium couples nail growth to digit regeneration. Nature. 2014;499:228–32.CrossRefGoogle Scholar
  66. 66.
    Stocum DL. The role of peripheral nerves in urodele limb regeneration. Eur J Neurosci. 2011;34:908–16.CrossRefPubMedGoogle Scholar
  67. 67.
    Farkas JE, Freitas PD, Bryant DM, Whited JL, Monaghan JR. Neuregulin-1 signaling is essential for nerve-dependent axolotl limb regeneration. Development. 2016;143:2724–31. doi: 10.1242/dev.133363.CrossRefPubMedGoogle Scholar
  68. 68.
    Buckley G, Wong J, Metcalfe AD, Ferguson MW. Denervation affects regenerative responses in MRL/MpJ and repair in C57BL/6 ear wounds. J Anat. 2012;220:3–12. doi: 10.1111/j.1469-7580.2011.01452.x.CrossRefPubMedGoogle Scholar
  69. 69.
    Mohammad KS, Neufeld DA. Denervation retards but does not prevent toetip regeneration. Wound Repair Regen. 2000;8:277–81.CrossRefPubMedGoogle Scholar
  70. 70.
    Rinkevich Y, Montoro DT, Muhonen E, Walmsley GG, Lo D, Hasegawa M, et al. Clonal analysis reveals nerve-dependent and independent roles on mammalian hind limb tissue maintenance and regeneration. Proc Natl Acad Sci U S A. 2014;111:9846–51.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Biology & UF Genetics InstituteUniversity of FloridaGainesvilleUSA

Personalised recommendations