Between the Conceptual and the Signified: How Language Changes when Using Dynamic Geometry Software for Construction Tasks

Article

Abstract

Spoken and written language change when students (age 14–15) work with digital tools in the mathematics classroom. The digital tool not only offers new experiences and actions that directly influence language, but also provides lexical expressions such as buttons or technical expressions that students use. This article studies language used in the mathematics classroom empirically when working with dynamic geometry software (DGS), especially in the context of geometrical constructions. The results show the variety of different lexical phenomena in the students’ use of language. The use of such lexical expressions also mirrors the use of the digital tool itself. Qualitative analysis of the videotaped paired task-based clinical interviews shows both obstacles and potentials of the lexical expressions that students use when working with dynamic geometry software.

Keywords

Geometry Language Construction Digital technology 

References

  1. Ball, L. (2003). Communication of mathematical thinking in examinations: Features of CAS and non-CAS student written records for a common Year 12 examination question. The International Journal of Computer Algebra in Mathematics Education, 10(3), 183–194.Google Scholar
  2. Ball, L., & Stacey, K. (2003). What should students record when solving problems with CAS? Reasons, information, the plan, and some answers. In J. Fey, A. Cuoco, C. Kieran, L. McMullin, & R. Zbiek (Eds.), Computer algebra systems in secondary school mathematics education (pp. 289–303). Reston: National Council of Teachers of Mathematics.Google Scholar
  3. Ball, L., & Stacey, K. (2004). A new practice evolving in learning mathematics: Differences in students’ written records with CAS. In M. Høines & B. Fugelstad (Eds.), Proceedings of the 28th conference of the International Group for the Psychology of mathematics education (Vol. I, pp. 87–94). Bergen: Psychology of Mathematics Education.Google Scholar
  4. Drijvers, P., Ball, L., Barzel, B., Heid, K., Cao, Y., & Maschietto, M. (2016). Uses of technology in lower secondary mathematics education: A concise topical survey. Cham: Springer.Google Scholar
  5. Duval, R. (1994). Les différents fonctionnements d’une figure dans une démarche géométrique. Repères-IREM, 17, 121–138.Google Scholar
  6. Duval, R. (2005). Les conditions cognitives de l’apprentissage de la géométrie: Développement de la visualisation, différenciation des raisonnements et coordination de leurs fonctionnements. Annales de Didactique et Sciences cognitives, 10, 5–53.Google Scholar
  7. Gray, E., & Tall, D. (1994). Duality, ambiguity, and flexibility: A ‘proceptual’ view of simple arithmetic. Journal for Research in Mathematics Education, 25(2), 116–140.CrossRefGoogle Scholar
  8. Hagemann, M. (2015). Ein empirisches Projekt zu sprachlichen Phänomenen bei geometrischen Erkundungen mit GeoGebra im Mathematikunterricht der Jahrgangsstufe 7. Unveröffentlichte Abschlussarbeit. TU Dortmund.Google Scholar
  9. Heintz, G., Elschenbroich, H.-J., Laakmann, H., Langlotz, H., Rüsing, M., Schacht, F., Schmidt, R., & Tietz, C. (2017). Werkzeugkompetenzen: Kompetent mit digitalen Werkzeugen Mathematik betreiben. Meriden: Medienstatt.Google Scholar
  10. Holland, G. (1974). Die Bedeutung von Konstruktionsaufgaben für den Geometrieunterricht. Der Mathematikunterricht, 20(1), 71–86.Google Scholar
  11. Holland, G. (1993). Geolog: Geometrische Konstruktionen mit dem Computer. Bonn: Dümmler.Google Scholar
  12. Hölzl, R. (1996). How does ‘dragging’ affect the learning of geometry? International Journal of Computers for Mathematical Learning, 1(2), 169–187.CrossRefGoogle Scholar
  13. Jore, F., & Parzysz, B. (2006). Metaphorical objects and actions in the learning of geometry: The case of French pre-service primary teachers. In M. Bosch (Ed.), European research in mathematics education IV (pp. 112–121). Saint Feliu de Guíxols: FUNDEMI IQS – Universitat Ramon Llull.Google Scholar
  14. Kaur, H. (2015). Two aspects of young children’s thinking about different types of dynamic triangles: Prototypicality and inclusion. ZDM: The International Journal on Mathematics Education, 47(3), 407–420.CrossRefGoogle Scholar
  15. Leong, Y., & Lim-Teo, S. (2003). Effects of Geometer’s sketchpad on spatial ability and achievement in transformation geometry among secondary two students in Singapore. The Mathematics Educator (Singapore), 7(1), 32–48.Google Scholar
  16. Leung, A. (2015). Discernment and reasoning in dynamic geometry environments. In S. Cho (Ed.), Selected regular lectures from the 12th International congress on mathematical education (pp. 551–569). Cham: Springer.Google Scholar
  17. Morgan, C., Craig, T., Schütte, M., & Wagner, D. (2014). Language and communication in mathematics education: An overview of research in the field. ZDM: The International Journal on Mathematics Education, 46(6), 843–853.CrossRefGoogle Scholar
  18. Österholm, M., & Bergqvist, E. (2013). What is so special about mathematical texts? Analyses of common claims in research literature and of properties of textbooks. ZDM: The International Journal on Mathematics Education, 45(5), 751–763.CrossRefGoogle Scholar
  19. Rezat, S., Rezat, S., & Janzen, S. (2015). Sprachsensibler Umgang mit Textmustern im Mathematikunterricht am Beispiel von Konstruktionsbeschreibungen. In F. Caluori, H. Linneweber-Lammerskitten, & C. Streit (Eds.), Beiträge zum Mathematikunterricht (pp. 736–739). Münster: WTM-Verlag.Google Scholar
  20. Roth, W. (2013). On meaning and mental representation: A pragmatic approach. Rotterdam: Sense.CrossRefGoogle Scholar
  21. Schacht, F. (2012). Mathematische Begriffsbildung zwischen Implizitem und Explizitem: Individuelle Begriffsbildungsprozesse zum Muster- und Variablenbegriff. Wiesbaden: Vieweg+Teubner.CrossRefGoogle Scholar
  22. Schacht, F. (2015a). Student documentations in mathematics classrooms using digital tools: Theoretical considerations and empirical findings. The Electronic Journal of Mathematics & Technology, 9(5), 320–339.Google Scholar
  23. Schacht, F. (2015b). Why buttons matter, sometimes: How digital tools affect students’ documentations. In N. Amado & S. Carreira (Eds.), Proceedings of the 12th International conference on technology in mathematics teaching (pp. 518–527). Faro: Universidado do Algarve.Google Scholar
  24. Schacht, F. (2016). Sprache im Mathematikunterricht mit digitalen Werkzeugen am Beispiel von Konstruktionsbeschreibungen. In Institut für Mathematik und Informatik Heidelberg (Ed.), Beiträge zum Mathematikunterricht 2016 (pp. 1317–1320). Münster: WTM-Verlag.Google Scholar
  25. Schacht, F., & Hußmann, S. (2015). Between the social and the individual: Reconfiguring a familiar relation. Philosophy of Mathematics Education Journal, 29, 26.Google Scholar
  26. Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22(1), 1–36.CrossRefGoogle Scholar
  27. Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses and mathematizing. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  28. Sinclair, N., & Yurita, V. (2008). To be or to become: How dynamic geometry changes discourse. Research in Mathematics Education, 10(2), 135–150.CrossRefGoogle Scholar
  29. Sinclair, N., Bartolini Bussi, M., de Villiers, M., Jones, K., Kortenkamp, U., Leung, A., & Owens, K. (2016). Recent research on geometry education: An ICME-13 survey team report. ZDM: The International Journal on Mathematics Education, 48(5), 691–719.CrossRefGoogle Scholar
  30. Strauss, A., & Corbin, J. (1990). Basics of qualitative research: Grounded theory procedures and techniques. Newbury Park: Sage.Google Scholar
  31. Tall, D., & Thomas, M. (1991). Encouraging versatile thinking in algebra using the computer. Educational Studies in Mathematics, 22(2), 125–147.CrossRefGoogle Scholar
  32. Tall, D., Thomas, M., Davis, G., Gray, E., & Simpson, A. (2000). What is the object of the encapsulation of a process? The Journal of Mathematical Behaviour, 18(2), 223–241.CrossRefGoogle Scholar
  33. Weigand, H.-G. (2013). Tests and examinations in a CAS environment: The meaning of mental, digital and paper representations. In B. Ubuz, C. Haser, & M. Mariotti (Eds.), Proceedings of the eighth congress of the European Society for Research in mathematics education (pp. 2764–2773). Ankara: Middle East Technical University.Google Scholar
  34. Weigand, H.-G., Filler, A., Hölzl, R., Kuntze, S., Ludwig, M., Roth, J., Schmidt-Thieme, B., & Wittmann, G. (2009). Didaktik der Geometrie für die Sekundarstufe I. Heidelberg: Springer Spektrum.CrossRefGoogle Scholar
  35. Wesselbaum, A. (2015). Eine empirische Erhebung in einer 7: Klasse eines Gymnasiums zur Nutzung von werkzeugbezogener Fachsprache bei geometrischen Erkundungen mit GeoGebra. Unveröffentlichte Abschlussarbeit (unpublished dissertation). Dortmund: Technische Universität Dortmund.Google Scholar
  36. Weth, T. (1994). Konstruktionen und Konstruktionsbeschreibungen mit GEOLOG. Der Mathematikunterricht, 39(1), 49–62.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Mathematics EducationUniversität Duisburg-EssenEssenGermany

Personalised recommendations