# Table 36 CI–SAPF results solving linear and nonlinear problems

Sr. No Test functions Solver Search space Function Value Optimum variables
Lower limit Upper limit
1 Dynamic problem (Maximization) Srivastava and Fahim [82] [0, 0, 0] [10, 10, 10] 16 [0, 1, 2]
CI–SAPF 16 [0, 1, 2]
CI–SAPF–CBO 16 [0, 1, 2]
CBO 15 [0, 2, 1]
2 Transportation problem Srivastava and Fahim [82] [0,…,0] [100,…,100] 40.5 [5, 15, 0, 0, 0, 15, 0, 5, 5]
CI–SAPF 40.8 [2,18, 0, 3, 0,12, 0, 2]
CI–SAPF–CBO 40.8 [2,18, 0, 3, 0,12, 0, 2]
3 Multistage oroblem (Maximization) Srivastava and Fahim [82] [0,0,0] [100,100,100] 55.2 [3, 1, 0]
CI–SAPF 55.2 [3,1,0]
CI–SAPF–CBO 55.2 [3,1,0]
CBO 32.7 [0,1,1]
4 Rosen-Suzuki test problem convex programming problem (Minimization) Srivastava and Fahim [82] [− 10,− 10,− 10,− 10] [20, 20, 20, 20] 44 [0,1, 2,- 1]
CI–SAPF − 44 [0,1, 2,− 1]
CI–SAPF–CBO − 44 [0, 1, 2, − 1]
CBO − 32 [− 1, 1, 2, 0]
5 Knapsack problem (maximization) Srivastava and Fahim [82] [0,…,0] [100,…,100] 19,979 [32, 2, 1, 0, 0, 0, 0]
CI–SAPF 20,059 [16, 18, 9, 0, 2, 8,0 ]
CI–SAPF–CBO 20,240 [27, 3, 4, 4, 8, 1, 5]
CBO 18,428 [16, 10, 8, 0, 19, 8, 38]
6 Integer linear problem
(a) (maximization)
Srivastava and Fahim [82] [0,…,0] [200,…,200] 316 [4, 87, 34, 149, 0]
CI–SAPF 1037 [200, 199, 67, 104, 0]
CI–SAPF–CBO 1040 [200, 200, 67, 106, 0]
CBO 393 [111, 138, 27, 0,136]
7 (b) (Maximization) Srivastava and Fahim [82] [0, 0] [100,1 00] 33 [3,6]
CI–SAPF 33 [3,6]
CI–SAPF–CBO 33 [3,6]
CBO 33 [3,6]
8 Non-convex Integer problem (formulation 1) Tsai et al. [89] [1, 1, 1] [5, 5, 5] 75.7579 [1, 2, 5]
CI–SAPF − 75.7579 [1, 2, 5]
CI–SAPF–CBO − 75.7579 [1, 2, 5]
CBO − 75.7579 [1, 2, 5]
(formulation 2) Tsai et al. [89] [0, 0, 0] [5, 5, 5] 125 [5, 4, 0]
CI–SAPF − 328.3159 [0, 5, 5]
CI–SAPF–CBO − 328.3159 [0, 5, 5]
CBO − 131.3264 [0, 2, 5]
9 Global nonlinear mixed
discrete programming
Tsai et al. [89] [3, 3] [6, 5] 246 [5, 4]
CI–SAPF − 275 [5, 5]
CI–SAPF–CBO − 275 [5, 5]
CBO − 275 [5, 5]
10 Three-bar truss design problem Shin et al. [80] [0.1, 0.2, 0.3, 0.5, 0.8, 1.0, 1.2] 3.0414 [1. 2, 0.5, 0.1]
CI–SAPF 3.0414 [1.2, 0.5, 0.1]
CI–SAPF–CBO 3.0414 [1.2, 0.5, 0.1]
CBO 3.0414 [1.2, 0.5, 0.1]
11 Monotone functions Lawler and Bell [53] [0, 0, 0, 0, 0] [3, 3, 3, 3, 3] 8 [1, 1, 1, 1, 2]
CI–SAPF 16 [1, 1, 2, 1, 3]
CI–SAPF–CBO 16 [1, 1, 2, 1, 3]
CBO 16 [1, 1, 2, 1, 3]
12 Lawler and Bell [53] [0, 0, 0, 0, 0, 0, 0] [7, 7, 7, 15, 15, 7, 15] 16 [1, 4, 1, 0, 2, 1, 2]
CI–SAPF 14 [0, 2, 4, 0, 2, 1, 6]
CI–SAPF–CBO 14 [0, 2, 4, 0, 2, 1, 6]
CBO 22 [2, 3,1, 1, 2, 1, 2]
13 Lawler and Bell [53] [0,0,0,0,0,0,0] [7,7,7,15,15,7,15] 10 [0,6,0,1,1,1,1]
CI–SAPF 11 [1,3,2,1,1,1,2]
CI–SAPF–CBO 11 [2,4,0,1,1,1,2]
14 Lawler and Bell [53] [0, 0, 0, 0, 0, 0, 0] [7, 7, 7, 15, 15, 7, 15] 46 [0, 7, 0, 0, 0, 2, 1]
CI–SAPF 92 [2,4, 0, 0, 1, 2, 2]
CI–SAPF–CBO 92 [2,4, 0, 0, 1, 2, 2]
15 Lawler and Bell [53] [0, 0, 0, 0, 0, 0, 0] [7, 7, 7, 15, 15, 7, 15] 25 [1, 4, 1, 1, 1, 1, 2]
CI–SAPF 21 [2,3, 1, 1, 1, 1, 2]
CI–SAPF–CBO 21 [2, 3, 1, 1, 1, 1, 2]
16 Lawler and Bell [53] [0, 0, 0, 0, 0, 0, 0] [7, 7, 7, 15, 15, 7, 15] 1000 [0, 7, 0 ,0, 0, 2,1]
CI–SAPF 1331 [1, 3, 2, 1, 1, 1, 2]
CI–SAPF–CBO 1331 [1, 3, 2, 1, 1, 1, 2]