Table 36 CI–SAPF results solving linear and nonlinear problems
Sr. No | Test functions | Solver | Search space | Function Value | Optimum variables | |
---|---|---|---|---|---|---|
Lower limit | Upper limit | |||||
1 | Dynamic problem (Maximization) | Srivastava and Fahim [82] | [0, 0, 0] | [10, 10, 10] | 16 | [0, 1, 2] |
CI–SAPF | 16 | [0, 1, 2] | ||||
CI–SAPF–CBO | 16 | [0, 1, 2] | ||||
CBO | 15 | [0, 2, 1] | ||||
2 | Transportation problem | Srivastava and Fahim [82] | [0,…,0] | [100,…,100] | 40.5 | [5, 15, 0, 0, 0, 15, 0, 5, 5] |
CI–SAPF | 40.8 | [2,18, 0, 3, 0,12, 0, 2] | ||||
CI–SAPF–CBO | 40.8 | [2,18, 0, 3, 0,12, 0, 2] | ||||
3 | Multistage oroblem (Maximization) | Srivastava and Fahim [82] | [0,0,0] | [100,100,100] | 55.2 | [3, 1, 0] |
CI–SAPF | 55.2 | [3,1,0] | ||||
CI–SAPF–CBO | 55.2 | [3,1,0] | ||||
CBO | 32.7 | [0,1,1] | ||||
4 | Rosen-Suzuki test problem convex programming problem (Minimization) | Srivastava and Fahim [82] | [− 10,− 10,− 10,− 10] | [20, 20, 20, 20] | − 44 | [0,1, 2,- 1] |
CI–SAPF | − 44 | [0,1, 2,− 1] | ||||
CI–SAPF–CBO | − 44 | [0, 1, 2, − 1] | ||||
CBO | − 32 | [− 1, 1, 2, 0] | ||||
5 | Knapsack problem (maximization) | Srivastava and Fahim [82] | [0,…,0] | [100,…,100] | 19,979 | [32, 2, 1, 0, 0, 0, 0] |
CI–SAPF | 20,059 | [16, 18, 9, 0, 2, 8,0 ] | ||||
CI–SAPF–CBO | 20,240 | [27, 3, 4, 4, 8, 1, 5] | ||||
CBO | 18,428 | [16, 10, 8, 0, 19, 8, 38] | ||||
6 |
Integer linear problem (a) (maximization) | Srivastava and Fahim [82] | [0,…,0] | [200,…,200] | 316 | [4, 87, 34, 149, 0] |
CI–SAPF | 1037 | [200, 199, 67, 104, 0] | ||||
CI–SAPF–CBO | 1040 | [200, 200, 67, 106, 0] | ||||
CBO | 393 | [111, 138, 27, 0,136] | ||||
7 | (b) (Maximization) | Srivastava and Fahim [82] | [0, 0] | [100,1 00] | 33 | [3,6] |
CI–SAPF | 33 | [3,6] | ||||
CI–SAPF–CBO | 33 | [3,6] | ||||
CBO | 33 | [3,6] | ||||
8 | Non-convex Integer problem (formulation 1) | Tsai et al. [89] | [1, 1, 1] | [5, 5, 5] | − 75.7579 | [1, 2, 5] |
CI–SAPF | − 75.7579 | [1, 2, 5] | ||||
CI–SAPF–CBO | − 75.7579 | [1, 2, 5] | ||||
CBO | − 75.7579 | [1, 2, 5] | ||||
(formulation 2) | Tsai et al. [89] | [0, 0, 0] | [5, 5, 5] | − 125 | [5, 4, 0] | |
CI–SAPF | − 328.3159 | [0, 5, 5] | ||||
CI–SAPF–CBO | − 328.3159 | [0, 5, 5] | ||||
CBO | − 131.3264 | [0, 2, 5] | ||||
9 |
Global nonlinear mixed discrete programming | Tsai et al. [89] | [3, 3] | [6, 5] | − 246 | [5, 4] |
CI–SAPF | − 275 | [5, 5] | ||||
CI–SAPF–CBO | − 275 | [5, 5] | ||||
CBO | − 275 | [5, 5] | ||||
10 | Three-bar truss design problem | Shin et al. [80] | [0.1, 0.2, 0.3, 0.5, 0.8, 1.0, 1.2] | 3.0414 | [1. 2, 0.5, 0.1] | |
CI–SAPF | 3.0414 | [1.2, 0.5, 0.1] | ||||
CI–SAPF–CBO | 3.0414 | [1.2, 0.5, 0.1] | ||||
CBO | 3.0414 | [1.2, 0.5, 0.1] | ||||
11 | Monotone functions | Lawler and Bell [53] | [0, 0, 0, 0, 0] | [3, 3, 3, 3, 3] | 8 | [1, 1, 1, 1, 2] |
CI–SAPF | 16 | [1, 1, 2, 1, 3] | ||||
CI–SAPF–CBO | 16 | [1, 1, 2, 1, 3] | ||||
CBO | 16 | [1, 1, 2, 1, 3] | ||||
12 | Lawler and Bell [53] | [0, 0, 0, 0, 0, 0, 0] | [7, 7, 7, 15, 15, 7, 15] | 16 | [1, 4, 1, 0, 2, 1, 2] | |
CI–SAPF | 14 | [0, 2, 4, 0, 2, 1, 6] | ||||
CI–SAPF–CBO | 14 | [0, 2, 4, 0, 2, 1, 6] | ||||
CBO | 22 | [2, 3,1, 1, 2, 1, 2] | ||||
13 | Lawler and Bell [53] | [0,0,0,0,0,0,0] | [7,7,7,15,15,7,15] | 10 | [0,6,0,1,1,1,1] | |
CI–SAPF | 11 | [1,3,2,1,1,1,2] | ||||
CI–SAPF–CBO | 11 | [2,4,0,1,1,1,2] | ||||
14 | Lawler and Bell [53] | [0, 0, 0, 0, 0, 0, 0] | [7, 7, 7, 15, 15, 7, 15] | 46 | [0, 7, 0, 0, 0, 2, 1] | |
CI–SAPF | 92 | [2,4, 0, 0, 1, 2, 2] | ||||
CI–SAPF–CBO | 92 | [2,4, 0, 0, 1, 2, 2] | ||||
15 | Lawler and Bell [53] | [0, 0, 0, 0, 0, 0, 0] | [7, 7, 7, 15, 15, 7, 15] | 25 | [1, 4, 1, 1, 1, 1, 2] | |
CI–SAPF | 21 | [2,3, 1, 1, 1, 1, 2] | ||||
CI–SAPF–CBO | 21 | [2, 3, 1, 1, 1, 1, 2] | ||||
16 | Lawler and Bell [53] | [0, 0, 0, 0, 0, 0, 0] | [7, 7, 7, 15, 15, 7, 15] | 1000 | [0, 7, 0 ,0, 0, 2,1] | |
CI–SAPF | 1331 | [1, 3, 2, 1, 1, 1, 2] | ||||
CI–SAPF–CBO | 1331 | [1, 3, 2, 1, 1, 1, 2] |