Skip to main content

Advertisement

Log in

A Review of Short Bowel Syndrome Including Current and Emerging Management Strategies

  • Pediatric Gastroenterology (SA Saeed and K Sandberg, Section Editors)
  • Published:
Current Treatment Options in Pediatrics Aims and scope Submit manuscript

Abstract

Purpose of review

Short bowel syndrome occurs as a consequence of congenital or acquired bowel loss that leads to myriad manifestations and a need for specialized nutritional therapy. It is a common cause of intestinal failure. This review seeks to summarize the scope of disease burden, review comorbidities, and emphasize current and evolving treatment strategies.

Recent findings

The implementation of multidisciplinary intestinal rehabilitation programs has improved patient outcomes. Lipid minimization and availability of alternative lipid emulsions, such as Omegaven and SMOFlipid, have been important to reducing intestinal failure–associated liver disease. Teduglutide, an analog of glucagon-like peptide 2, promotes intestinal adaptation and holds a promising future as an emerging treatment option.

Summary

Management is nuanced and complex with considerations related to nutrition, growth, liver health, vascular integrity, bone health, infectious risks, neurodevelopment, and quality of life. New opportunities for collaborative, prospective, multisite research are emerging with the widespread application of electronic medical records and the possibility of integrated multicenter databases. Ongoing research efforts seek to further optimize intestinal adaptation through pharmacologic and non-pharmacologic means.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Vanderhoof JA, Langnas AN, Pinch LW, Thompson JS, Kaufman SS. Short bowel syndrome. J Pediatr Gastroenterol Nutr. 1992;14(4):359–70.

    Article  CAS  Google Scholar 

  2. Galea MH, Holliday H, Carachi R, Kapila L. Short-bowel syndrome: a collective review. J Pediatr Surg. 1992;27(5):592–6. https://doi.org/10.1016/0022-3468(92)90455-g.

    Article  CAS  PubMed  Google Scholar 

  3. • Duggan CP, Jaksic T. Pediatric Intestinal Failure. N Engl J Med. 2017;377(7):666–75. https://doi.org/10.1056/NEJMra1602650 This article provides an excellent and comprehensive review of pediatric intestinal failure. It highlights pathophysiology as well as medical and surgical management approaches.

  4. Mutanen A, Wales PW. Etiology and prognosis of pediatric short bowel syndrome. Semin Pediatr Surg. 2018;27(4):209–17. https://doi.org/10.1053/j.sempedsurg.2018.07.009.

    Article  PubMed  Google Scholar 

  5. DiBaise JK, Young RJ, Vanderhoof JA. Intestinal rehabilitation and the short bowel syndrome: part 1. Am J Gastroenterol. 2004;99(7):1386–95. https://doi.org/10.1111/j.1572-0241.2004.30345.x.

    Article  PubMed  Google Scholar 

  6. Vanderhoof JA, Matya SM. Enteral and parenteral nutrition in patients with short-bowel syndrome. Eur J Pediatr Surg. 1999;9(4):214–9. https://doi.org/10.1055/s-2008-1072247.

    Article  CAS  PubMed  Google Scholar 

  7. Warner BW, Ziegler MM. Management of the short bowel syndrome in the pediatric population. Pediatr Clin North Am. 1993;40(6):1335–50. https://doi.org/10.1016/s0031-3955(16)38664-3.

    Article  CAS  PubMed  Google Scholar 

  8. Oliveira C, de Silva NT, Stanojevic S, Avitzur Y, Bayoumi AM, Ungar WJ, et al. Change of outcomes in pediatric intestinal failure: use of time-series analysis to assess the evolution of an intestinal rehabilitation program. J Am Coll Surg. 2016;222(6):1180–8 e3. https://doi.org/10.1016/j.jamcollsurg.2016.03.007.

  9. Merras-Salmio L, Mutanen A, Ylinen E, Rintala R, Koivusalo A, Pakarinen MP. Pediatric intestinal failure: the key outcomes for the first 100 patients treated in a national tertiary referral center during 1984–2017. JPEN J Parenter Enteral Nutr. 2018;42(8):1304–13. https://doi.org/10.1002/jpen.1164.

    Article  PubMed  Google Scholar 

  10. Wales PW, de Silva N, Kim J, Lecce L, To T, Moore A. Neonatal short bowel syndrome: population-based estimates of incidence and mortality rates. J Pediatr Surg. 2004;39(5):690–5. https://doi.org/10.1016/j.jpedsurg.2004.01.036.

    Article  PubMed  Google Scholar 

  11. Short TD, Stallings EB, Isenburg J, O'Leary LA, Yazdy MM, Bohm MK, et al. Gastroschisis trends and ecologic link to opioid prescription rates - United States, 2006–2015. MMWR Morb Mortal Wkly Rep. 2019;68(2):31–6. https://doi.org/10.15585/mmwr.mm6802a2.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Spencer AU, Neaga A, West B, Safran J, Brown P, Btaiche I, et al. Pediatric short bowel syndrome: redefining predictors of success. Ann Surg. 2005;242(3):403–9 discussion 9–12.

  13. Mezoff EA, Minneci PC, Dienhart MC. Intestinal failure. a description of the problem and recent therapeutic advances. Clin Perinatol. 2020;47(2):323–40. https://doi.org/10.1016/j.clp.2020.02.008.

    Article  PubMed  Google Scholar 

  14. Courtney CM, Onufer EJ, Seiler KM, Warner BW. An anatomic approach to understanding mechanisms of intestinal adaptation. Semin Pediatr Surg. 2018;27(4):229–36. https://doi.org/10.1053/j.sempedsurg.2018.07.002.

    Article  PubMed  Google Scholar 

  15. Dekaney CM, Fong JJ, Rigby RJ, Lund PK, Henning SJ, Helmrath MA. Expansion of intestinal stem cells associated with long-term adaptation following ileocecal resection in mice. Am J Physiol Gastrointest Liver Physiol. 2007;293(5):G1013–22. https://doi.org/10.1152/ajpgi.00218.2007.

    Article  CAS  PubMed  Google Scholar 

  16. Hanson WR, Osborne JW, Sharp JG. Compensation by the residual intestine after intestinal resection in the rat. I. Influence of amount of tissue removed. Gastroenterology. 1977;72(4 Pt 1):692–700.

    Article  CAS  Google Scholar 

  17. Hanson WR, Osborne JW, Sharp JG. Compensation by the residual intestine after intestinal resection in the rat. II. Influence of postoperative time interval. Gastroenterology. 1977;72(4 Pt 1):701–5.

    Article  CAS  Google Scholar 

  18. •• Squires RH, Duggan C, Teitelbaum DH, Wales PW, Balint J, Venick R, et al. Natural history of pediatric intestinal failure: initial report from the Pediatric Intestinal Failure Consortium. J Pediatr. 2012;161(4):723–8 e2. https://doi.org/10.1016/j.jpeds.2012.03.062 This is the first description of the pediatric intestinal failure consortium (PIFCon). The study reports on a cohort of 272 infants and children with intestinal failure managed by 14 intestinal rehabilitation sites. It demonstrates that progression to enteral autonomy may require years and highlights the significant morbidity and mortality seen in this population.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Helmrath MA, VanderKolk WE, Can G, Erwin CR, Warner BW. Intestinal adaptation following massive small bowel resection in the mouse. J Am Coll Surg. 1996;183(5):441–9.

    CAS  PubMed  Google Scholar 

  20. Feldman EJ, Dowling RH, McNaughton J, Peters TJ. Effects of oral versus intravenous nutrition on intestinal adaptation after small bowel resection in the dog. Gastroenterology. 1976;70(5 PT.1):712–9.

    Article  CAS  Google Scholar 

  21. Choi PM, Sun RC, Guo J, Erwin CR, Warner BW. High-fat diet enhances villus growth during the adaptation response to massive proximal small bowel resection. J Gastrointest Surg. 2014;18(2):286–94; discussion 94. https://doi.org/10.1007/s11605-013-2338-7.

  22. • Andorsky DJ, Lund DP, Lillehei CW, Jaksic T, Dicanzio J, Richardson DS et al. Nutritional and other postoperative management of neonates with short bowel syndrome correlates with clinical outcomes. J Pediatr. 2001;139(1):27–33. doi:https://doi.org/10.1067/mpd.2001.114481. This study demonstrated the importance of early enteral nutrition. In addition to longer remnant bowel length, this study showed that early enteral feeding with breast milk or an amino acid–based formula was associated with shorter PN duration.

  23. Mezoff EA, Hawkins JA, Ollberding NJ, Karns R, Morrow AL, Helmrath MA. The human milk oligosaccharide 2′-fucosyllactose augments the adaptive response to extensive intestinal. Am J Physiol Gastrointest Liver Physiol. 2016;310(6):G427–38. https://doi.org/10.1152/ajpgi.00305.2015.

    Article  PubMed  Google Scholar 

  24. Neelis E, de Koning B, Rings E, Wijnen R, Nichols B, Hulst J, et al. The gut microbiome in patients with intestinal failure: current evidence and implications for clinical practice. JPEN J Parenter Enteral Nutr. 2019;43(2):194-205. https://doi.org/10.1002/jpen.1423.

  25. Chaet MS, Arya G, Ziegler MM, Warner BW. Epidermal growth factor enhances intestinal adaptation after massive small bowel resection. J Pediatr Surg. 1994;29(8):1035–8; discussion 8–9. https://doi.org/10.1016/0022-3468(94)90274-7.

  26. Tsai CH, Hill M, Asa SL, Brubaker PL, Drucker DJ. Intestinal growth-promoting properties of glucagon-like peptide-2 in mice. Am J Physiol. 1997;273(1 Pt 1):E77–84. https://doi.org/10.1152/ajpendo.1997.273.1.E77.

    Article  CAS  PubMed  Google Scholar 

  27. Knott AW, Juno RJ, Jarboe MD, Profitt SA, Erwin CR, Smith EP, et al. Smooth muscle overexpression of IGF-I induces a novel adaptive response to small bowel resection. Am J Physiol Gastrointest Liver Physiol. 2004;287(3):G562–70. https://doi.org/10.1152/ajpgi.00438.2003.

    Article  CAS  PubMed  Google Scholar 

  28. • Fallon EM, Mitchell PD, Nehra D, Potemkin AK, O'Loughlin AA, Gura KM, et al. Neonates with short bowel syndrome: an optimistic future for parenteral nutrition independence. JAMA Surg. 2014;149(7):663–70. https://doi.org/10.1001/jamasurg.2013.4332 This study demonstrates a relationship between remnant bowel length and probability of weaning PN, specifically showing that longer remnant bowel length is associated with increased likelihood of achieving enteral autonomy. This information is particularly useful when discussing prognosis with the parents of a patient with newly diagnosed intestinal failure related to short bowel syndrome.

  29. Sondheimer JM, Cadnapaphornchai M, Sontag M, Zerbe GO. Predicting the duration of dependence on parenteral nutrition after neonatal intestinal resection. J Pediatr. 1998;132(1):80–4.

    Article  CAS  Google Scholar 

  30. Khan FA, Squires RH, Litman HJ, Balint J, Carter BA, Fisher JG, et al. Predictors of enteral autonomy in children with intestinal failure: a multicenter cohort study. J Pediatr. 2015;167(1):29–34 e1. https://doi.org/10.1016/j.jpeds.2015.03.040.

  31. Quiros-Tejeira RE, Ament ME, Reyen L, Herzog F, Merjanian M, Olivares-Serrano N, et al. Long-term parenteral nutritional support and intestinal adaptation in children with short bowel syndrome: a 25-year experience. J Pediatr. 2004;145(2):157–63. https://doi.org/10.1016/j.jpeds.2004.02.030.

    Article  PubMed  Google Scholar 

  32. Hess RA, Welch KB, Brown PI, Teitelbaum DH. Survival outcomes of pediatric intestinal failure patients: analysis of factors contributing to improved survival over the past two decades. J Surg Res. 2011;170(1):27–31. https://doi.org/10.1016/j.jss.2011.03.037.

    Article  PubMed  Google Scholar 

  33. Merras-Salmio L, Pakarinen MP. Refined multidisciplinary protocol-based approach to short bowel syndrome improves outcomes. J Pediatr Gastroenterol Nutr. 2015;61(1):24–9. https://doi.org/10.1097/MPG.0000000000000775.

    Article  PubMed  Google Scholar 

  34. Abi Nader E, Lambe C, Talbotec C, Pigneur B, Lacaille F, Garnier-Lengline H, et al. Outcome of home parenteral nutrition in 251 children over a 14-y period: report of a single center. Am J Clin Nutr. 2016;103(5):1327–36. https://doi.org/10.3945/ajcn.115.121756.

    Article  CAS  PubMed  Google Scholar 

  35. Pichler J, Horn V, Macdonald S, Hill S. Intestinal failure-associated liver disease in hospitalised children. Arch Dis Child. 2012;97(3):211–4. https://doi.org/10.1136/archdischild-2011-300274.

    Article  PubMed  Google Scholar 

  36. Lauriti G, Zani A, Aufieri R, Cananzi M, Chiesa PL, Eaton S, et al. Incidence, prevention, and treatment of parenteral nutrition-associated cholestasis and intestinal failure-associated liver disease in infants and children: a systematic review. JPEN J Parenter Enteral Nutr. 2014;38(1):70–85. https://doi.org/10.1177/0148607113496280.

    Article  PubMed  Google Scholar 

  37. Kocoshis SA. Medical management of pediatric intestinal failure. Semin Pediatr Surg. 2010;19(1):20–6. https://doi.org/10.1053/j.sempedsurg.2009.11.003.

    Article  PubMed  Google Scholar 

  38. Javid PJ, Oron AP, Duggan CP, Squires RH, Horslen SP, Consortium PIF. The extent of intestinal failure-associated liver disease in patients referred for intestinal rehabilitation is associated with increased mortality: an analysis of the Pediatric Intestinal Failure Consortium database. J Pediatr Surg. 2018;53(7):1399–402. https://doi.org/10.1016/j.jpedsurg.2017.08.049.

    Article  PubMed  Google Scholar 

  39. Steinbach M, Clark RH, Kelleher AS, Flores C, White R, Chace DH, et al. Demographic and nutritional factors associated with prolonged cholestatic jaundice in the premature infant. J Perinatol. 2008;28(2):129–35. https://doi.org/10.1038/sj.jp.7211889.

    Article  CAS  PubMed  Google Scholar 

  40. Vileisis RA, Inwood RJ, Hunt CE. Prospective controlled study of parenteral nutrition-associated cholestatic jaundice: effect of protein intake. J Pediatr. 1980;96(5):893–7.

    Article  CAS  Google Scholar 

  41. Tyson JE, Kennedy KA. Trophic feedings for parenterally fed infants. Cochrane Database Syst Rev. 2005;3. CD000504, https://doi.org/10.1002/14651858.CD000504.pub2.

  42. Lacaille F, Gupte G, Colomb V, D'Antiga L, Hartman C, Hojsak I, et al. Intestinal failure-associated liver disease: a position paper of the ESPGHAN Working Group of Intestinal Failure and Intestinal Transplantation. J Pediatr Gastroenterol Nutr. 2015;60(2):272–83. https://doi.org/10.1097/MPG.0000000000000586.

    Article  CAS  PubMed  Google Scholar 

  43. Mutanen A, Lohi J, Heikkila P, Koivusalo AI, Rintala RJ, Pakarinen MP. Persistent abnormal liver fibrosis after weaning off parenteral nutrition in pediatric intestinal failure. Hepatology. 2013;58(2):729–38. https://doi.org/10.1002/hep.26360.

    Article  CAS  PubMed  Google Scholar 

  44. Gura KM, Crowley M. A detailed guide to lipid therapy in intestinal failure. Semin Pediatr Surg. 2018;27(4):242–55. https://doi.org/10.1053/j.sempedsurg.2018.07.003.

    Article  PubMed  Google Scholar 

  45. Hukkinen M, Mutanen A, Nissinen M, Merras-Salmio L, Gylling H, Pakarinen MP. Parenteral plant sterols accumulate in the liver reflecting their increased serum levels and portal inflammation in children with intestinal failure. JPEN J Parenter Enteral Nutr. 2017;41(6):1014–22. https://doi.org/10.1177/0148607116637855.

    Article  CAS  PubMed  Google Scholar 

  46. Early TF, Gregory RT, Wheeler JR, Snyder SO Jr, Gayle RG. Increased infection rate in double-lumen versus single-lumen Hickman catheters in cancer patients. South Med J. 1990;83(1):34–6.

    Article  CAS  Google Scholar 

  47. Spencer TR, Mahoney KJ. Reducing catheter-related thrombosis using a risk reduction tool centered on catheter to vessel ratio. J Thromb Thrombolysis. 2017;44(4):427–34. https://doi.org/10.1007/s11239-017-1569-y.

    Article  PubMed  Google Scholar 

  48. Wales PW, Kosar C, Carricato M, de Silva N, Lang K, Avitzur Y. Ethanol lock therapy to reduce the incidence of catheter-related bloodstream infections in home parenteral nutrition patients with intestinal failure: preliminary experience. J Pediatr Surg. 2011;46(5):951–6. https://doi.org/10.1016/j.jpedsurg.2011.02.036.

    Article  PubMed  Google Scholar 

  49. Jones BA, Hull MA, Richardson DS, Zurakowski D, Gura K, Fitzgibbons SC, et al. Efficacy of ethanol locks in reducing central venous catheter infections in pediatric patients with intestinal failure. J Pediatr Surg. 2010;45(6):1287–93. https://doi.org/10.1016/j.jpedsurg.2010.02.099.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cober MP, Kovacevich DS, Teitelbaum DH. Ethanol-lock therapy for the prevention of central venous access device infections in pediatric patients with intestinal failure. JPEN J Parenter Enteral Nutr. 2011;35(1):67–73. https://doi.org/10.1177/0148607110362758.

    Article  PubMed  Google Scholar 

  51. • Rahhal R, Abu-El-Haija MA, Fei L, Ebach D, Orkin S, Kiscaden E, et al. Systematic review and meta-analysis of the utilization of ethanol locks in pediatric patients with intestinal failure. JPEN J Parenter Enteral Nutr. 2018;42(4):690–701. https://doi.org/10.1177/0148607117722753 This meta-analysis evaluated the effectiveness and safety of ethanol locks. The authors found a mean difference in rate of catheter-related blood stream infection of 6.27 events per 1000 catheter days favoring ethanol locks.

  52. Donlan RM. Biofilm elimination on intravascular catheters: important considerations for the infectious disease practitioner. Clin Infect Dis. 2011;52(8):1038–45. https://doi.org/10.1093/cid/cir077.

    Article  PubMed  Google Scholar 

  53. Opilla MT, Kirby DF, Edmond MB. Use of ethanol lock therapy to reduce the incidence of catheter-related bloodstream infections in home parenteral nutrition patients. JPEN J Parenter Enteral Nutr. 2007;31(4):302–5. https://doi.org/10.1177/0148607107031004302.

    Article  PubMed  Google Scholar 

  54. Mermel LA, Allon M, Bouza E, Craven DE, Flynn P, O'Grady NP, et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;49(1):1–45. https://doi.org/10.1086/599376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Denny DF Jr. Venous access salvage techniques. Tech Vasc Interv Radiol. 2011;14(4):225–32. https://doi.org/10.1053/j.tvir.2011.05.006.

    Article  PubMed  Google Scholar 

  56. Sullivan PM, Merritt R, Pelayo JC, Ing FF. Recanalization of occluded central veins in a parenteral nutrition-dependent child with no access. Pediatrics. 2018;141(Suppl 5):S416–S20. https://doi.org/10.1542/peds.2017-0270.

    Article  PubMed  Google Scholar 

  57. Mziray-Andrew CH, Sentongo TA. Nutritional deficiencies in intestinal failure. Pediatr Clin North Am. 2009;56(5):1185–200. https://doi.org/10.1016/j.pcl.2009.07.005.

    Article  PubMed  Google Scholar 

  58. Yang CF, Duro D, Zurakowski D, Lee M, Jaksic T, Duggan C. High prevalence of multiple micronutrient deficiencies in children with intestinal failure: a longitudinal study. J Pediatr. 2011;159(1):39–44 e1. https://doi.org/10.1016/j.jpeds.2010.12.049.

  59. Ubesie AC, Kocoshis SA, Mezoff AG, Henderson CJ, Helmrath MA, Cole CR. Multiple micronutrient deficiencies among patients with intestinal failure during and after transition to enteral nutrition. J Pediatr. 2013;163(6):1692–6. https://doi.org/10.1016/j.jpeds.2013.07.015.

    Article  CAS  PubMed  Google Scholar 

  60. Namjoshi SS, Muradian S, Bechtold H, Reyen L, Venick RS, Marcus EA, et al. Nutrition deficiencies in children with intestinal failure receiving chronic parenteral nutrition. JPEN J Parenter Enteral Nutr. 2018;42(2):427–35. https://doi.org/10.1177/0148607117690528.

    Article  CAS  PubMed  Google Scholar 

  61. Neelis E, Olieman J, Rizopoulos D, Wijnen R, Rings E, de Koning B, et al. Growth, body composition, and micronutrient abnormalities during and after weaning off home parenteral nutrition. J Pediatr Gastroenterol Nutr. 2018;67(5):e95–e100. https://doi.org/10.1097/MPG.0000000000002090.

    Article  CAS  PubMed  Google Scholar 

  62. Nucci AM, Ellsworth K, Michalski A, Nagel E, Wessel J, Section APIF. Survey of nutrition management practices in centers for pediatric intestinal rehabilitation. Nutr Clin Pract. 2018;33(4):528–38. https://doi.org/10.1177/0884533617719670.

    Article  PubMed  Google Scholar 

  63. Hukkinen M, Merras-Salmio L, Pakarinen MP. Health-related quality of life and neurodevelopmental outcomes among children with intestinal failure. Semin Pediatr Surg. 2018;27(4):273–9. https://doi.org/10.1053/j.sempedsurg.2018.07.004.

    Article  PubMed  Google Scholar 

  64. Kelly DG, Tappenden KA, Winkler MF. Short bowel syndrome: highlights of patient management, quality of life, and survival. JPEN J Parenter Enteral Nutr. 2014;38(4):427–37. https://doi.org/10.1177/0148607113512678.

    Article  PubMed  Google Scholar 

  65. Winkler MF, Smith CE. Clinical, social, and economic impacts of home parenteral nutrition dependence in short bowel syndrome. JPEN J Parenter Enteral Nutr. 2014;38(1 Suppl):32S–7S. https://doi.org/10.1177/0148607113517717.

    Article  PubMed  Google Scholar 

  66. Pederiva F, Khalil B, Morabito A, Wood SJ. Impact of short bowel syndrome on quality of life and family: the patient’s perspective. Eur J Pediatr Surg. 2018. https://doi.org/10.1055/s-0037-1621737.

  67. Sanchez SE, McAteer JP, Goldin AB, Horslen S, Huebner CE, Javid PJ. Health-related quality of life in children with intestinal failure. J Pediatr Gastroenterol Nutr. 2013;57(3):330–4. https://doi.org/10.1097/MPG.0b013e3182999961.

    Article  PubMed  Google Scholar 

  68. Wang X, Xu Z, Miao CH. Current clinical evidence on the effect of general anesthesia on neurodevelopment in children: an updated systematic review with meta-regression. PLoS One. 2014;9(1):e85760. https://doi.org/10.1371/journal.pone.0085760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Belkind-Gerson J, Carreon-Rodriguez A, Contreras-Ochoa CO, Estrada-Mondaca S, Parra-Cabrera MS. Fatty acids and neurodevelopment. J Pediatr Gastroenterol Nutr. 2008;47(Suppl 1):S7–9. https://doi.org/10.1097/MPG.0b013e3181818e3f.

    Article  CAS  PubMed  Google Scholar 

  70. Chesley PM, Sanchez SE, Melzer L, Oron AP, Horslen SP, Bennett FC, et al. Neurodevelopmental and cognitive outcomes in children with intestinal failure. J Pediatr Gastroenterol Nutr. 2016;63(1):41–5. https://doi.org/10.1097/MPG.0000000000001067.

    Article  PubMed  PubMed Central  Google Scholar 

  71. So S, Patterson C, Gold A, Rogers A, Kosar C, de Silva N, et al. Early neurodevelopmental outcomes of infants with intestinal failure. Early Hum Dev. 2016;101:11–6. https://doi.org/10.1016/j.earlhumdev.2016.05.012.

    Article  PubMed  Google Scholar 

  72. Javid PJ, Wendel D, Horslen SP. Organization and outcomes of multidisciplinary intestinal failure teams. Semin Pediatr Surg. 2018;27(4):218–22. https://doi.org/10.1053/j.sempedsurg.2018.07.005.

    Article  PubMed  Google Scholar 

  73. •• Merritt RJ, Cohran V, Raphael BP, Sentongo T, Volpert D, Warner BW, et al. Intestinal rehabilitation programs in the management of pediatric intestinal failure and short bowel syndrome. J Pediatr Gastroenterol Nutr., 2017. 65(5):588–96. https://doi.org/10.1097/MPG.0000000000001722 This article highlights the important role multidisciplinary intestinal rehabilitation programs play in the care of pediatric intestinal failure patients and provides recommendations from NASPGHAN regarding those necessitating referral to an intestinal rehabilitation program and recommendations regarding team members necessary and helpful to an intestinal rehabilitation program.

  74. Dudrick SJ, Wilmore DW, Vars HM, Rhoads JE. Long-term total parenteral nutrition with growth, development, and positive nitrogen balance. Surgery. 1968;64(1):134–42.

    CAS  PubMed  Google Scholar 

  75. Oliveira SB, Cole CR. Insights into medical management of pediatric intestinal failure. Semin Pediatr Surg. 2018;27(4):256–60. https://doi.org/10.1053/j.sempedsurg.2018.07.006.

    Article  PubMed  Google Scholar 

  76. Davila J, Konrad D. Metabolic complications of home parenteral nutrition. Nutr Clin Pract. 2017;32(6):753–68. https://doi.org/10.1177/0884533617735089.

    Article  PubMed  Google Scholar 

  77. Mezoff EA, Cole CR, Cohran VC. Etiology and medical management of pediatric intestinal failure. Gastroenterol Clin North Am. 2019;48(4):483–98. https://doi.org/10.1016/j.gtc.2019.08.003.

    Article  PubMed  Google Scholar 

  78. Holman RT. The ratio of trienoic: tetraenoic acids in tissue lipids as a measure of essential fatty acid requirement. J Nutr. 1960;70(3):405–10. https://doi.org/10.1093/jn/70.3.405.

    Article  CAS  PubMed  Google Scholar 

  79. Lee SI, Valim C, Johnston P, Le HD, Meisel J, Arsenault DA, et al. Impact of fish oil-based lipid emulsion on serum triglyceride, bilirubin, and albumin levels in children with parenteral nutrition-associated liver disease. Pediatr Res. 2009;66(6):698–703. https://doi.org/10.1203/PDR.0b013e3181bbdf2b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gura KM, Duggan CP, Collier SB, Jennings RW, Folkman J, Bistrian BR, et al. Reversal of parenteral nutrition-associated liver disease in two infants with short bowel syndrome using parenteral fish oil: implications for future management. Pediatrics. 2006;118(1):e197–201. https://doi.org/10.1542/peds.2005-2662.

    Article  PubMed  Google Scholar 

  81. Nandivada P, Fell GL, Gura KM, Puder M. Lipid emulsions in the treatment and prevention of parenteral nutrition-associated liver disease in infants and children. Am J Clin Nutr. 2016;103(2):629S–34S. https://doi.org/10.3945/ajcn.114.103986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gonzalez-Hernandez J, Prajapati P, Ogola G, Nguyen V, Channabasappa N, Piper HG. A comparison of lipid minimization strategies in children with intestinal failure. J Pediatr Surg. 2017. https://doi.org/10.1016/j.jpedsurg.2017.10.030.

  83. Clayton PT, Bowron A, Mills KA, Massoud A, Casteels M, Milla PJ. Phytosterolemia in children with parenteral nutrition-associated cholestatic liver disease. Gastroenterology. 1993;105(6):1806–13. https://doi.org/10.1016/0016-5085(93)91079-w.

    Article  CAS  PubMed  Google Scholar 

  84. Gura KM, Lee S, Valim C, Zhou J, Kim S, Modi BP, et al. Safety and efficacy of a fish-oil-based fat emulsion in the treatment of parenteral nutrition-associated liver disease. Pediatrics. 2008;121(3):e678–86. https://doi.org/10.1542/peds.2007-2248.

    Article  PubMed  Google Scholar 

  85. Diamond IR, Grant RC, Pencharz PB, de Silva N, Feldman BM, Fitzgerald P, et al. Preventing the progression of intestinal failure-associated liver disease in infants using a composite lipid emulsion: a pilot randomized controlled trial of SMOFlipid. JPEN J Parenter Enteral Nutr. 2017;41(5):866–77. https://doi.org/10.1177/0148607115626921.

    Article  CAS  PubMed  Google Scholar 

  86. Gosselin KB, Duggan C. Enteral nutrition in the management of pediatric intestinal failure. J Pediatr. 2014;165(6):1085–90. https://doi.org/10.1016/j.jpeds.2014.08.012.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kaufman SS, Loseke CA, Lupo JV, Young RJ, Murray ND, Pinch LW, et al. Influence of bacterial overgrowth and intestinal inflammation on duration of parenteral nutrition in children with short bowel syndrome. J Pediatr. 1997;131(3):356–61.

    Article  CAS  Google Scholar 

  88. Malik BA, Xie YY, Wine E, Huynh HQ. Diagnosis and pharmacological management of small intestinal bacterial overgrowth in children with intestinal failure. Can J Gastroenterol. 2011;25(1):41–5.

    Article  Google Scholar 

  89. DiBaise JK, Young RJ, Vanderhoof JA. Intestinal rehabilitation and the short bowel syndrome: part 2. Am J Gastroenterol. 2004;99(9):1823–32. https://doi.org/10.1111/j.1572-0241.2004.40836.x.

    Article  PubMed  Google Scholar 

  90. Fusaro F, Tambucci R, Romeo E, Bagolan P, Dall'Oglio L, Ceccarelli S, et al. Anastomotic ulcers in short bowel syndrome: New suggestions from a multidisciplinary approach. J Pediatr Surg. 2018;53(3):483–8. https://doi.org/10.1016/j.jpedsurg.2017.05.030.

    Article  PubMed  Google Scholar 

  91. Bass LM, Zimont J, Prozialeck J, Superina R, Cohran V. Intestinal anastomotic ulcers in children with short bowel syndrome and anemia detected by capsule endoscopy. J Pediatr Gastroenterol Nutr. 2015;61(2):215–9. https://doi.org/10.1097/MPG.0000000000000778.

    Article  PubMed  Google Scholar 

  92. Dehmer JJ, Fuller MK, Helmrath MA. Management of pediatric intestinal failure. Adv Pediatr. 2011;58(1):181–94. https://doi.org/10.1016/j.yapd.2011.03.012.

    Article  PubMed  Google Scholar 

  93. Belza C, Fitzgerald K, Amaral J, Steinberg K, Avitzur Y, Wales PW. Use of balloon dilatation for management of postoperative intestinal strictures in children with short bowel syndrome. J Pediatr Surg. 2017;52(5):760–3. https://doi.org/10.1016/j.jpedsurg.2017.01.040.

    Article  PubMed  Google Scholar 

  94. Busch A, Sturm E. Screening endoscopy contributes to relevant modifications of therapeutic regimen in children with intestinal failure. J Pediatr Gastroenterol Nutr. 2018;67(4):478–82. https://doi.org/10.1097/MPG.0000000000002022.

    Article  PubMed  Google Scholar 

  95. Ramos-Gonzalez G, Kim HB. Autologous intestinal reconstruction surgery. Semin Pediatr Surg. 2018;27(4):261–6. https://doi.org/10.1053/j.sempedsurg.2018.08.001.

    Article  PubMed  Google Scholar 

  96. King B, Carlson G, Khalil BA, Morabito A. Intestinal bowel lengthening in children with short bowel syndrome: systematic review of the Bianchi and STEP procedures. World J Surg. 2013;37(3):694–704. https://doi.org/10.1007/s00268-012-1879-3.

    Article  PubMed  Google Scholar 

  97. Modi BP, Javid PJ, Jaksic T, Piper H, Langer M, Duggan C, et al. First report of the international serial transverse enteroplasty data registry: indications, efficacy, and complications. J Am Coll Surg. 2007;204(3):365–71. https://doi.org/10.1016/j.jamcollsurg.2006.12.033.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Fisher JG, Stamm DA, Modi BP, Duggan C, Jaksic T. Gastrointestinal bleeding as a complication of serial transverse enteroplasty. J Pediatr Surg. 2014;49(5):745–9. https://doi.org/10.1016/j.jpedsurg.2014.02.060.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Celik N, Stanley K, Rudolph J, Al-Issa F, Kosmach B, Ashokkumar C, et al. Improvements in intestine transplantation. Semin Pediatr Surg. 2018;27(4):267–72. https://doi.org/10.1053/j.sempedsurg.2018.07.001.

    Article  PubMed  Google Scholar 

  100. Kaufman SS, Atkinson JB, Bianchi A, Goulet OJ, Grant D, Langnas AN, et al. Indications for pediatric intestinal transplantation: a position paper of the American Society of Transplantation. Pediatr Transplant. 2001;5(2):80–7.

    Article  CAS  Google Scholar 

  101. Celik N, Mazariegos GV, Soltys K, Rudolph JA, Shi Y, Bond GJ, et al. Pediatric Intestinal Transplantation. Gastroenterol Clin North Am. 2018;47(2):355–68. https://doi.org/10.1016/j.gtc.2018.01.007.

    Article  PubMed  Google Scholar 

  102. Vanek VW, Ayers P, Kraft M, Bouche JM, Do VT, Durham CW, et al. A call to action for optimizing the electronic health record in the parenteral nutrition workflow: executive summary. Nutr Clin Pract. 2018;33(5):594–6. https://doi.org/10.1002/ncp.10202.

    Article  PubMed  Google Scholar 

  103. Noritz G, Boggs A, Lowes LP, Smoyer WE. “Learn from every patient”: how a learning health system can improve patient care. Pediatr Qual Saf. 2018;3(5):e100. https://doi.org/10.1097/pq9.0000000000000100.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Smith MD, Institute of Medicine (U.S.). Committee on the Learning Health Care System in America. Best care at lower cost : the path to continuously learning health care in America. Washington: National Academies Press; 2013.

  105. •• Carter BA, Cohran VC, Cole CR, Corkins MR, Dimmitt RA, Duggan C, et al. Outcomes from a 12-week, open-label, multicenter clinical trial of teduglutide in pediatric short bowel syndrome. J Pediatr. 2017;181:102–11 e5. https://doi.org/10.1016/j.jpeds.2016.10.027 This study assessed outcomes from a clinical trial of teduglutide, a GLP-2 analog developed to promote mucosal growth and gut absorption in pediatric patients with short bowel syndrome. Patients tolerated teduglutide well and demonstrated trends toward reduction in PN requirements and advancements in enteral nutrition feeding.

  106. Martin I, Jakob M, Schaefer DJ. From tissue engineering to regenerative surgery. EBioMedicine. 2018;28:11–2. https://doi.org/10.1016/j.ebiom.2018.01.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colleen B. Flahive MD.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pediatric Gastroenterology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flahive, C.B., Goldschmidt, M. & Mezoff, E.A. A Review of Short Bowel Syndrome Including Current and Emerging Management Strategies. Curr Treat Options Peds 7, 1–16 (2021). https://doi.org/10.1007/s40746-020-00218-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40746-020-00218-z

Keywords

Navigation