Skip to main content

Advertisement

Log in

Going Beyond Gluten-Free: a Review of Potential Future Therapies for Celiac Disease

  • Pediatric Gastroenterology (SA Saeed and K Sandberg, Section Editors)
  • Published:
Current Treatment Options in Pediatrics Aims and scope Submit manuscript

Abstract

Purpose of Review

Celiac disease is a common chronic autoimmune condition for which the only therapy currently available is strict adherence to a gluten-free diet for life. Although the diet is effective in reversing the intestinal mucosal changes, it is cumbersome to follow, is associated with some dietary deficiencies, is less palatable, and has significant quality of life implications. For all these reasons, alternatives to the gluten-free diet would greatly benefit people with celiac disease.

Recent Findings

A better understanding of the pathophysiology of celiac disease has led to possible new treatments that target various steps in the development of the disease. These include intraluminal digestive enzymes and peptide-binding agents that render gluten non-toxic, drugs that modulate tight junctions between enterocytes or interfere with the inflammatory cascade that causes mucosal destruction, and agents designed to induce immune tolerance to gluten.

Summary

Although several of these new therapeutic agents currently under investigation are showing some promise, they still need to demonstrate they are as effective and safe as the gluten-free diet before they can be recommended as an acceptable alternative for treatment of people with celiac disease. The gluten-free diet remains the only proven safe and effective treatment for celiac disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CD:

Celiac disease

GFD:

Gluten-free diet

tTG:

Tissue transglutaminase

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ludvigsson JF, Leffler DA, Bai JC, Biagi F, Fasano A, Green PH, et al. The Oslo definitions for coeliac disease and related terms. Gut. 2013;62(1):43–52. https://doi.org/10.1136/gutjnl-2011-301346.

    Article  PubMed  Google Scholar 

  2. • Singh P, Arora A, Strand TA, Leffler DA, Catassi C, Green PH, et al. Global prevalence of celiac disease: systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2018;16(6):823–36 e2. https://doi.org/10.1016/j.cgh.2017.06.037 This meta-analysis demonstrates that while prevalence of celiac disease may vary by country, it remains high worldwide and is increasing over time.

    Article  PubMed  Google Scholar 

  3. Mustalahti K, Catassi C, Reunanen A, Fabiani E, Heier M, McMillan S, et al. The prevalence of celiac disease in Europe: results of a centralized, international mass screening project. Ann Med. 2010;42(8):587–95. https://doi.org/10.3109/07853890.2010.505931.

    Article  PubMed  Google Scholar 

  4. Yuan J, Zhou C, Gao J, Li J, Yu F, Lu J, et al. Prevalence of celiac disease autoimmunity among adolescents and young adults in China. Clin Gastroenterol Hepatol. 2017;15(10):1572–9 e1. https://doi.org/10.1016/j.cgh.2017.04.025.

    Article  CAS  PubMed  Google Scholar 

  5. Catassi C, Gatti S, Lionetti E. World perspective and celiac disease epidemiology. Dig Dis. 2015;33(2):141–6. https://doi.org/10.1159/000369518.

    Article  PubMed  Google Scholar 

  6. Kupfer SS, Jabri B. Pathophysiology of celiac disease. Gastrointest Endosc Clin N Am. 2012;22(4):639–60. https://doi.org/10.1016/j.giec.2012.07.003.

    Article  PubMed  Google Scholar 

  7. •• Hill I, Fasano A, Guandalini S, Hoffenberg E, Levy J, Reilly N, et al. NASPGHAN Clinical report on the diagnosis and treatment of gluten-related disorders. Journal of Pediatric Gastroenterology and Nutrition. 2016;63(1):156–65. https://doi.org/10.1097/MPG.0000000000001216 These are the North American guidelines for the diagnosis of celiac disease which include recommendations for biopsy to establish the diagnosis.

    Article  CAS  PubMed  Google Scholar 

  8. •• Husby S, Koletzko S, Korponay-Szabo I, Kurppa K, Mearin ML, Ribes-Koninckx C, et al. European Society Paediatric Gastroenterology, Hepatology and Nutrition guidelines for diagnosing coeliac disease 2020. J Pediatr Gastroenterol Nutr. 2020;70(1):141–56. https://doi.org/10.1097/MPG.0000000000002497 These are the European guidelines for the diagnosis of celiac disease which include recommendations and guidance for a biopsy-free diagnosis.

    Article  PubMed  Google Scholar 

  9. Thomas B, Bishop J. British Dietetic Association. Manual of dietetic practice. 4th ed. Oxford. Blackwell Pub.: Ames; 2007.

    Google Scholar 

  10. Studerus D, Hampe EI, Fahrer D, Wilhelmi M, Vavricka SR. Cross-Contamination with gluten by using kitchen utensils: fact or fiction? J Food Prot. 2018;81(10):1679–84. https://doi.org/10.4315/0362-028X.JFP-17-383.

    Article  PubMed  Google Scholar 

  11. • Weisbrod VM, Silvester JA, Raber C, McMahon J, Coburn SS, Kerzner B. Preparation of gluten-free foods alongside gluten-containing food may not always be as risky for celiac patients as diet guides suggest. Gastroenterology. 2020;158(1):273–5. https://doi.org/10.1053/j.gastro.2019.09.007 This study is able to provide evidence that food preparation recommendations for a gluten-free diet may not need to be as strict as previously thought.

    Article  PubMed  Google Scholar 

  12. Miller K, McGough N, Urwin H. Catering gluten-free when simultaneously using wheat flour. J Food Prot. 2016;79(2):282–7. https://doi.org/10.4315/0362-028X.JFP-15-213.

    Article  PubMed  Google Scholar 

  13. Food Labeling. Gluten-free labeling of foods. Dept of Health and Human Services, FDA Final Rule. Docket No. FDA-2005-N-0404.2013.

  14. Food Labeling. Gluten-free labeling of fermented or hydrolyzed foods. Dept of Health and Human Services, FDA Final Rule, Docket No. FDA-2014-N-1021. 2020.

  15. Kulai T, Rashid M. Assessment of nutritional adequacy of packaged gluten-free food products. Can J Diet Pract Res. 2014;75(4):186–90. https://doi.org/10.3148/cjdpr-2014-022.

    Article  PubMed  Google Scholar 

  16. Zuccotti G, Fabiano V, Dilillo D, Picca M, Cravidi C, Brambilla P. Intakes of nutrients in Italian children with celiac disease and the role of commercially available gluten-free products. J Hum Nutr Diet. 2013;26(5):436–44. https://doi.org/10.1111/jhn.12026.

    Article  CAS  PubMed  Google Scholar 

  17. Amirikian K, Sansotta N, Guandalini S, Jericho H. Effects of the gluten-free diet on body mass indexes in pediatric celiac patients. J Pediatr Gastroenterol Nutr. 2019;68(3):360–3. https://doi.org/10.1097/MPG.0000000000002190.

    Article  CAS  PubMed  Google Scholar 

  18. Olsson C, Lyon P, Hornell A, Ivarsson A, Sydner YM. Food that makes you different: the stigma experienced by adolescents with celiac disease. Qual Health Res. 2009;19(7):976–84. https://doi.org/10.1177/1049732309338722.

    Article  PubMed  Google Scholar 

  19. Rashid M, Cranney A, Zarkadas M, Graham ID, Switzer C, Case S, et al. Celiac disease: evaluation of the diagnosis and dietary compliance in Canadian children. Pediatrics. 2005;116(6):e754–9. https://doi.org/10.1542/peds.2005-0904.

    Article  PubMed  Google Scholar 

  20. MacCulloch K, Rashid M. Factors affecting adherence to a gluten-free diet in children with celiac disease. Paediatr Child Health. 2014;19(6):305–9. https://doi.org/10.1093/pch/19.6.305.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mager DR, Marcon M, Brill H, Liu A, Radmanovich K, Mileski H, et al. Adherence to the gluten-free diet and health-related quality of life in an ethnically diverse pediatric population with celiac disease. J Pediatr Gastroenterol Nutr. 2018;66(6):941–8. https://doi.org/10.1097/MPG.0000000000001873.

    Article  PubMed  Google Scholar 

  22. Shah S, Akbari M, Vanga R, Kelly CP, Hansen J, Theethira T, et al. Patient perception of treatment burden is high in celiac disease compared with other common conditions. Am J Gastroenterol. 2014;109(9):1304–11. https://doi.org/10.1038/ajg.2014.29.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yoosuf S, Makharia GK. Evolving therapy for celiac disease. Front Pediatr. 2019;7:193. https://doi.org/10.3389/fped.2019.00193.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Murray JA, Kelly CP, Green PHR, Marcantonio A, Wu TT, Maki M, et al. No difference between latiglutenase and placebo in reducing villous atrophy or improving symptoms in patients with symptomatic celiac disease. Gastroenterology. 2017;152(4):787–98 e2. https://doi.org/10.1053/j.gastro.2016.11.004.

    Article  CAS  PubMed  Google Scholar 

  25. Syage JA, Murray JA, Green PHR, Khosla C. Latiglutenase improves symptoms in seropositive celiac disease patients while on a gluten-free diet. Dig Dis Sci. 2017;62(9):2428–32. https://doi.org/10.1007/s10620-017-4687-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Syage JA, Green PHR, Khosla C, Adelman DC, Sealey-Voyksner JA, Murray JA. Latiglutenase treatment for celiac disease: symptom and quality of life improvement for seropositive patients on a gluten-free diet. GastroHep. 2019;1(6):293–301. https://doi.org/10.1002/ygh2.371.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wolf C, Siegel JB, Tinberg C, Camarca A, Gianfrani C, Paski S, et al. Engineering of Kuma030: a gliadin peptidase that rapidly degrades immunogenic gliadin peptides in gastric conditions. J Am Chem Soc. 2015;137(40):13106–13. https://doi.org/10.1021/jacs.5b08325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Salden BN, Monserrat V, Troost FJ, Bruins MJ, Edens L, Bartholome R, et al. Randomised clinical study: aspergillus niger-derived enzyme digests gluten in the stomach of healthy volunteers. Aliment Pharmacol Ther. 2015;42(3):273–85. https://doi.org/10.1111/apt.13266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mohan Kumar BV, Vijaykrishnaraj M, Kurrey NK, Shinde VS, Prabhasankar P. Prolyl endopeptidase-degraded low immunoreactive wheat flour attenuates immune responses in Caco-2 intestinal cells and gluten-sensitized BALB/c mice. Food Chem Toxicol. 2019;129:466–75. https://doi.org/10.1016/j.fct.2019.05.011.

    Article  CAS  PubMed  Google Scholar 

  30. Konig J, Holster S, Bruins MJ, Brummer RJ. Randomized clinical trial: Effective gluten degradation by Aspergillus niger-derived enzyme in a complex meal setting. Sci Rep. 2017;7(1):13100. https://doi.org/10.1038/s41598-017-13587-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tack GJ, van de Water JM, Bruins MJ, Kooy-Winkelaar EM, van Bergen J, Bonnet P, et al. Consumption of gluten with gluten-degrading enzyme by celiac patients: a pilot-study. World J Gastroenterol. 2013;19(35):5837–47. https://doi.org/10.3748/wjg.v19.i35.5837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Valitutti F, Fasano A. Breaking down barriers: how understanding celiac disease pathogenesis informed the development of novel treatments. Dig Dis Sci. 2019;64(7):1748–58. https://doi.org/10.1007/s10620-019-05646-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Paterson BM, Lammers KM, Arrieta MC, Fasano A, Meddings JB. The safety, tolerance, pharmacokinetic and pharmacodynamic effects of single doses of AT-1001 in coeliac disease subjects: a proof of concept study. Aliment Pharmacol Ther. 2007;26(5):757–66. https://doi.org/10.1111/j.1365-2036.2007.03413.x.

    Article  CAS  PubMed  Google Scholar 

  34. Leffler DA, Kelly CP, Abdallah HZ, Colatrella AM, Harris LA, Leon F, et al. A randomized, double-blind study of larazotide acetate to prevent the activation of celiac disease during gluten challenge. Am J Gastroenterol. 2012;107(10):1554–62. https://doi.org/10.1038/ajg.2012.211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kelly CP, Green PH, Murray JA, Dimarino A, Colatrella A, Leffler DA, et al. Larazotide acetate in patients with coeliac disease undergoing a gluten challenge: a randomised placebo-controlled study. Aliment Pharmacol Ther. 2013;37(2):252–62. https://doi.org/10.1111/apt.12147.

    Article  CAS  PubMed  Google Scholar 

  36. Leffler DA, Kelly CP, Green PH, Fedorak RN, DiMarino A, Perrow W, et al. Larazotide acetate for persistent symptoms of celiac disease despite a gluten-free diet: a randomized controlled trial. Gastroenterology. 2015;148(7):1311–9 e6. https://doi.org/10.1053/j.gastro.2015.02.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alhassan E, Yadav A, Kelly CP, Mukherjee R. Novel nondietary therapies for celiac disease. Cell Mol Gastroenterol Hepatol. 2019;8(3):335–45. https://doi.org/10.1016/j.jcmgh.2019.04.017.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pinier M, Verdu EF, Nasser-Eddine M, David CS, Vezina A, Rivard N, et al. Polymeric binders suppress gliadin-induced toxicity in the intestinal epithelium. Gastroenterology. 2009;136(1):288–98. https://doi.org/10.1053/j.gastro.2008.09.016.

    Article  CAS  PubMed  Google Scholar 

  39. McCarville JL, Nisemblat Y, Galipeau HJ, Jury J, Tabakman R, Cohen A, et al. BL-7010 demonstrates specific binding to gliadin and reduces gluten-associated pathology in a chronic mouse model of gliadin sensitivity. PLoS One. 2014;9(11):e109972. https://doi.org/10.1371/journal.pone.0109972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xia J, Bergseng E, Fleckenstein B, Siegel M, Kim CY, Khosla C, et al. Cyclic and dimeric gluten peptide analogues inhibiting DQ2-mediated antigen presentation in celiac disease. Bioorg Med Chem. 2007;15(20):6565–73. https://doi.org/10.1016/j.bmc.2007.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kapoerchan VV, Wiesner M, Overhand M, van der Marel GA, Koning F, Overkleeft HS. Design of azidoproline containing gluten peptides to suppress CD4+ T-cell responses associated with celiac disease. Bioorg Med Chem. 2008;16(4):2053–62. https://doi.org/10.1016/j.bmc.2007.10.091.

    Article  CAS  PubMed  Google Scholar 

  42. Kapoerchan VV, Wiesner M, Hillaert U, Drijfhout JW, Overhand M, Alard P, et al. Design, synthesis and evaluation of high-affinity binders for the celiac disease associated HLA-DQ2 molecule. Mol Immunol. 2010;47(5):1091–7. https://doi.org/10.1016/j.molimm.2009.10.036.

    Article  CAS  PubMed  Google Scholar 

  43. Tye-Din JA, Stewart JA, Dromey JA, Beissbarth T, van Heel DA, Tatham A, et al. Comprehensive, quantitative mapping of T cell epitopes in gluten in celiac disease. Sci Transl Med. 2010;2(41):41ra51. https://doi.org/10.1126/scitranslmed.3001012.

    Article  CAS  PubMed  Google Scholar 

  44. Goel G, King T, Daveson AJ, Andrews JM, Krishnarajah J, Krause R, et al. Epitope-specific immunotherapy targeting CD4-positive T cells in coeliac disease: two randomised, double-blind, placebo-controlled phase 1 studies. Lancet Gastroenterol Hepatol. 2017;2(7):479–93. https://doi.org/10.1016/S2468-1253(17)30110-3.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Daveson AJM, Ee HC, Andrews JM, King T, Goldstein KE, Dzuris JL, et al. Epitope-specific immunotherapy targeting CD4-positive T cells in celiac disease: safety, pharmacokinetics, and effects on intestinal histology and plasma cytokines with escalating dose regimens of Nexvax2 in a randomized, double-blind, placebo-controlled phase 1 study. EBioMedicine. 2017;26:78–90. https://doi.org/10.1016/j.ebiom.2017.11.018.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Truitt KE, Daveson AJM, Ee HC, Goel G, MacDougall J, Neff K, et al. Randomised clinical trial: a placebo-controlled study of subcutaneous or intradermal NEXVAX2, an investigational immunomodulatory peptide therapy for coeliac disease. Aliment Pharmacol Ther. 2019;50(5):547–55. https://doi.org/10.1111/apt.15435.

    Article  CAS  PubMed  Google Scholar 

  47. Pearson RM, Podojil JR, Shea LD, King NJC, Miller SD, Getts DR. Overcoming challenges in treating autoimmuntity: development of tolerogenic immune-modifying nanoparticles. Nanomedicine. 2019;18:282–91. https://doi.org/10.1016/j.nano.2018.10.001.

    Article  CAS  PubMed  Google Scholar 

  48. Freitag TL, Podojil JR, Pearson RM, Fokta FJ, Sahl C, Messing M, et al. Gliadin nanoparticles induce immune tolerance to gliadin in mouse models of celiac disease. Gastroenterology. 2020;158(6):1667–81 e12. https://doi.org/10.1053/j.gastro.2020.01.045.

    Article  CAS  PubMed  Google Scholar 

  49. Kelly CP, Murray J, Leffler D, Bledsoe A, Smithson G, Podojil JR et al., editors. CNP-101 prevents gluten challenge induced immune activation in adults with celiac disease. United European Gastroenterology Week; 2019 10/22/2019; Barcelona, Spain.

  50. Lahdeaho ML, Scheinin M, Vuotikka P, Taavela J, Popp A, Laukkarinen J, et al. Safety and efficacy of AMG 714 in adults with coeliac disease exposed to gluten challenge: a phase 2a, randomised, double-blind, placebo-controlled study. Lancet Gastroenterol Hepatol. 2019;4(12):948–59. https://doi.org/10.1016/S2468-1253(19)30264-X.

    Article  PubMed  Google Scholar 

  51. Cellier C, Bouma G, van Gils T, Khater S, Malamut G, Crespo L, et al. Safety and efficacy of AMG 714 in patients with type 2 refractory coeliac disease: a phase 2a, randomised, double-blind, placebo-controlled, parallel-group study. Lancet Gastroenterol Hepatol. 2019;4(12):960–70. https://doi.org/10.1016/S2468-1253(19)30265-1.

    Article  PubMed  Google Scholar 

  52. Yokoyama S, Perera PY, Waldmann TA, Hiroi T, Perera LP. Tofacitinib, a janus kinase inhibitor demonstrates efficacy in an IL-15 transgenic mouse model that recapitulates pathologic manifestations of celiac disease. J Clin Immunol. 2013;33(3):586–94. https://doi.org/10.1007/s10875-012-9849-y.

    Article  CAS  PubMed  Google Scholar 

  53. Theron M, Bentley D, Nagel S, Manchester M, Gerg M, Schindler T, et al. Pharmacodynamic monitoring of RO5459072, a small molecule inhibitor of cathepsin S. Front Immunol. 2017;8:806. https://doi.org/10.3389/fimmu.2017.00806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Edwards JC, Cambridge G. B-cell targeting in rheumatoid arthritis and other autoimmune diseases. Nat Rev Immunol. 2006;6(5):394–403. https://doi.org/10.1038/nri1838.

    Article  CAS  PubMed  Google Scholar 

  55. Mukewar SS, Sharma A, Rubio-Tapia A, Wu TT, Jabri B, Murray JA. Open-capsule budesonide for refractory celiac disease. Am J Gastroenterol. 2017;112(6):959–67. https://doi.org/10.1038/ajg.2017.71.

    Article  CAS  PubMed  Google Scholar 

  56. Therrien A, Silvester JA, Leonard MM, Leffler DA, Fasano A, Kelly CP. Enteric-release budesonide may be useful in the management of non-responsive celiac disease. Dig Dis Sci. 2020. https://doi.org/10.1007/s10620-020-06454-5.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brandon Sparks MD.

Ethics declarations

Conflict of Interest

Ivor Hill, MD, receives royalties from UpToDate as a chapter author. Brandon Sparks declares that he has no conflict of interest. Tracy Ediger declares that he has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pediatric Gastroenterology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sparks, B., Hill, I. & Ediger, T. Going Beyond Gluten-Free: a Review of Potential Future Therapies for Celiac Disease. Curr Treat Options Peds 7, 17–31 (2021). https://doi.org/10.1007/s40746-020-00217-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40746-020-00217-0

Keywords

Navigation