Skip to main content

Advertisement

Log in

The Febrile Infant

  • Pediatrics in South America (L Landry and WB de Carvalho, Section Editors)
  • Published:
Current Treatment Options in Pediatrics Aims and scope Submit manuscript

Abstract

Purpose of review

Fever is a common complaint between children under 36 months of age. While most of febrile children are affected from viral infections, some infants can suffer from a serious bacterial infection (SBI). This article focuses on the child with fever without source (FWS) and the available diagnostic tools to estimate SBI risk and avoid unnecessary complementary tests and treatments, as well as their use in routine clinical practice in a Latin American country.

Recent findings

The combination of medical history, physical examination, and complementary tests continues to being very important to take decisions on febrile infant. Procalcitonin, C-reactive protein, and absolute neutrophil count are the most relevant complementary tests to help us perform actions on infants with FWS with good clinical appearance and without risk factors.

Summary

The evaluation and disposition of febrile infants is highly variable, particularly among infants between 29 and 60 days of age. If a child has bad appearance or the bacterial source of fever is definite, treatment needs to be started immediately. However, if febrile infant has FWS, has a good clinical appearance, and does not have risk factors in medical history, the complementary tests can be necessary to identify febrile infants with low SBI risk. The evaluation of SBI risk, and mainly of invasive bacterial infection—bacteremia and meningitis—, will continue to change according to new scientific researches; training and experience of physicians and availability of auxiliary tests; and, of course, sociocultural background. This is particularly important in low-resource settings; therefore, in children 1 to 2 months of age, it is preferable to establish a safer strategy to assess SBI risk and hospitalization should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bilkis MD, Vásquez M, González FC, et al. Estudio multicéntrico de la urgencia pediátrica. Arch Argent Pediatr. 2006;104(4):301–8 Arch Argent Pediatr, págs. 301–8.

    Google Scholar 

  2. Ishimine P. The evolving approach to the young child who has fever and no obvious source. Emerg Med Clin N Am. 2007;25(4):1087–115. https://doi.org/10.1016/j.emc.2007.07.012.

    Article  Google Scholar 

  3. Nawar EW, Niska RW, Xu J. National Hospital Ambulatory Medical Care Survey: 2005 emergency department summary. Adv Data. 2007 Jun 29;386:1–32.

    Google Scholar 

  4. Arora R, Mahajan P. Evaluation of child with fever without source review of literature and update. Pediatr Clin N Am. 2013;60:1049–62.

    Google Scholar 

  5. Machado BM, Cardoso DM, de Paulis M, de Ulhoa Escobar AM, Gilio AE. Fever without source: evaluation of a guideline. J Pediatr (Rio J). 2009;85(5):426–32.

    Google Scholar 

  6. Ishmine P. Risk stratification and management of the febrile young child. Emerg Med Clin N Am. 2013;31:601–26.

    Google Scholar 

  7. Ministerio de Salud y Desarrollo Social de Republica Argentina. Organización Panamericana de la Salud. Organización Mundial de la Salud. Indicadores básicos Argentina 2018. www.paho.org/arg/index.php?option=com_content&view=article&id=160:datos-estadistic.

  8. Organización Panamericana de la Salud. Organización Mundial de la Salud. Inmunización en las Américas. Resumen 2018. Inmunización integral de la familia. Familia, promoción de la salud y curso de vida. www.paho.org/hq/index.php?option=com_docman&view=down.

  9. Wing R, Dor M, McQuilkin P. Fever in the pediatric patient. Emerg Med Clin N Am. 2013;31:1073–96.

    Google Scholar 

  10. Ishimine P. Fever without source in children 0 to 36 months of age. Pediatr Clin N Am. 2006;53:167–94.

    Google Scholar 

  11. Kuppermann N, Fleisher GR, Jaffe DM. Predictors of occult pneumococcal bacteremia in young febrile children. Ann Emerg Med. 1998;31:679–87.

    CAS  PubMed  Google Scholar 

  12. Slater M, Krug SE. Evaluation of the infant with fever without source: an evidence based approach. Emerg Med Clin North Am. 1999;17:97–126.

    CAS  PubMed  Google Scholar 

  13. Álvarez Rodríguez A, Ortiz Silva O, Hernández MN. Validación de nuevos parámetros predictivos de infecciones bacterianas severas en niños febriles menores de 36 meses de edad. Rev Cubana Pediatr. 1999;71(4):197–204.

    Google Scholar 

  14. Stanley R. Pagon, Bachur R. Hyperpyrexia among infants younger than 3 months. Pediatr Emerg Care. 2005;21(5):291–4.

    PubMed  Google Scholar 

  15. Trautner BW, Caviness AC, Gerlacher GR, et al. Prospective evaluation of true risk of serious bacterial infection in children who present to the emergency department with hyperpyrexia. Pediatrics. 2006;118(1):34–40.

    PubMed  PubMed Central  Google Scholar 

  16. Baraff LJ. Management of infants and young children with fever without source. Pediatric Annals. 2008;37:673–9.

    PubMed  Google Scholar 

  17. Baraff LJ, Bass JW, Fleisher GR, Klein JO, GH MC Jr, Powell KR, et al. Practice guideline for the management of infants and children 0 to 36 months of age with fever without source. Agency for Health Care Policy and Research. Ann Emerg Med. 1993;22(7):1198–210. https://doi.org/10.1016/s0196-0644(05)80991-6:s.n.

  18. Baker MD, Bell LM, Avner JR. Outpatient management without antibiotics of fever in selected infants. N Engl J Med. 1993;329:1437–41.

    CAS  PubMed  Google Scholar 

  19. Jaskiewicz JA, McCarthy CA, Richardson AC, et al. Febrile infants at low risk for serious bacterial infection—an appraisal of the Rochester criteria and implications for management. Febrile Infant Collaborative Study Group. Pediatrics. 1994;94:390–6.

    CAS  Google Scholar 

  20. Van den Bruel A, Haj-Hassan T, Thompson M, Buntinx F, Mant D. Diagnostic value of clinical features at presentation to identify serious infection in children in developed countries: a systematic review. Lancet. 2010;375(9717):834–45.

    PubMed  Google Scholar 

  21. Thompson M, Coad N, Harnden A, Mayon-White R, Perera R, Mant D. How well do vital signs identify children with serious infections in paediatric emergency care? Arch Dis Child. 2009;94(11):888–93.

    CAS  PubMed  Google Scholar 

  22. Trainor J, Stamos JK. Fever Without a localizing source. Pediatric Annals. 2011;40(1):21–5.

    PubMed  Google Scholar 

  23. Pantell RH, Newman TB, Bernzweig J, Bergman DA, Takayama JI, Segal M, et al. Management and outcomes of care of fever in early infancy. JAMA. 2004;291:1203–12.

    PubMed  Google Scholar 

  24. Rino P, Vidal C. Lactante febril. In: Manual de Emergencias y Cuidados Críticos. Comité Nacional de Terapia Intensiva. Sociedad Argentina de Pediatría. FUNDASAP Ediciones; 2009. p. 465–73.

    Google Scholar 

  25. Paganini HR. Fiebre sin foco en el lactante entre 3 y 36 meses de edad. In: Infectología Pediátrica 2007. 1st ed. Buenos Aires: Científica Interamericana; 2007. p. 232–6.

    Google Scholar 

  26. Jaffe DM, Fleisher GR. Temperature and total white blood cell count as indicators of bacteremia. Pediatrics. 1991;87:670–4.

    CAS  PubMed  Google Scholar 

  27. American College of Emergency Physicians Clinical Policies Committee; American College of Emergency Physicians Clinical Policies Subcommittee on Pediatric Fever. Clinical policy for children younger than three years presenting to the emergency department with fever. Ann Emerg Med. 2003;42(4):530–45.

    Google Scholar 

  28. Kuppermann N. Occult bacteremia in young febrile children. Pediatr Clin North Am. 1999;46:1073–109.

    CAS  PubMed  Google Scholar 

  29. •• Gomez B, Mintegi S, Bressan S, et al. Validation of the “Step-by-Step” Approach in the management of young febrile infants. Pediatrics. 2016;138(2):e20154381 Prospective study. They validated a tool for the management of infants with FWS and confirmed superior accuracy in identifying febrile infants under 3 months of age with low risk for IBI, compared with the Rochester criteria and the Lab-score.

    PubMed  Google Scholar 

  30. Kuppermann N, Dayan PS, Levine DA, et al. Febrile Infant Working Group of the Pediatric Emergency Care Applied Research Network (PECARN). A clinical prediction rule to identify febrile infants 60 days and younger at low risk for serious bacterial infections. JAMA Pediatr. 2019. https://doi.org/10.1001/jamapediatrics.2018.5501 s.n. Prospective, observational, and multicentric study. They validated a prediction rule to identify febrile infants younger than 60 days of age with low risk for SBI. They included urine test, ANC, and procalcitonin levels.

    PubMed  Google Scholar 

  31. Galetto-Lacour A, Gervaix A. Identifying severe bacterial infection in children with fever without source. Expert Review of Anti-infective Therapy. 2010;8(11):1231–7.

    PubMed  Google Scholar 

  32. Sanders S, Barnett A, Correa-Velez I, Coulthard M, Doust J. Systematic review of the diagnostic accuracy of C-reactive protein to detect bacterial infection in nonhospitalized infants and children with fever. J. Pediatr. 2008;153(4):570–4.

    CAS  PubMed  Google Scholar 

  33. Galetto-Lacour A, Zamora SA, Gervaix A. Bedside procalcitonin and C-reactive protein tests in children with fever without localizing signs of infection seen in a referral center. Pediatrics. 2003;112(5):1054–60.

    PubMed  Google Scholar 

  34. Van den Bruel A, Thompson MJ, Haj-Hassan T, Stevens R, Moll H, Lakhanpaul M, Mant D. Diagnostic value of laboratory tests in identifying serious infections in febrile children: systematic review. BMJ. 2011;342:d3082.: s.n.

  35. •• Milcent K, Faesch S, Gras-Le Guen C, et al. Use of procalcitonin assays to predict serious bacterial infection in young febrile infants. JAMA Pediatr. 2016;170(1):62–9 Prospective cohort study. It evaluates the utility PCT assay in infants with FWS between 7 and 91 days to identify IBS and IBI and concludes that PCT test is better than CRP for identifying IBI in febrile infant and both tests have similar results in detecting IBS.

    PubMed  Google Scholar 

  36. Olaciregui I, Hernandez U, Munoz JA, Emparanza JI, Landa JJ. Markers that predict serious bacterial infection in infants under 3 months of age presenting with fever of unknown origin. Arch. Dis. Child. 2009;94(7):501–5.

    CAS  PubMed  Google Scholar 

  37. Tamsut England J, Del Vecchio MT, Aronoff SC. Use of serum procalcitonin in evaluation of febrile infants: a meta-analysis of 2317 patients. The Journal of Emergency Medicine. 2014;47(6):682–8.

    Google Scholar 

  38. Subcommittee on Urinary Tract Infection, Steering Committee on Quality Improvement and Management, Roberts KB. Urinary tract infection: clinical practice guideline for the diagnosis and management of the initial UTI in febrile infants and children 2 to 24 months: s.n. Pediatrics. 2011;128(3):595–610. https://doi.org/10.1542/peds.2011-1330 Epub 2011 Aug 28.

    Article  Google Scholar 

  39. Subcommittee on Urinary Tract Infection. Committee on Quality Improvement. American Academy of Pediatrics. Practice parameter: the diagnosis, treatment, and evaluation of the initial urinary tract infection in febrile infants and young children. Published corrections appear in Pediatrics 2000;105(1 pt 1):141. Pediatrics. 1999;103(5 pt 1):1052 and Pediatrics 1999;104(1 pt 1):118]. Pediatrics 1999;103(4 pt 1):84352.: s.n.

    Google Scholar 

  40. Bramson RT, Meyer TL, Silbiger ML, Blickman JG, Halpern E. The futility of the chest radiograph in the febrile infant without respiratory symptoms. Pediatrics. 1993;92(4):524–6.

    CAS  PubMed  Google Scholar 

  41. Murphy CG, van de Pol AC, Harper MB, Bachur RG. Clinical predictors of occult pneumonia in the febrile child. Acad Emerg Med. 2007;14(3):243–9.

    PubMed  Google Scholar 

  42. Kadish HA, Loveridge B, Tobey J, Bolte RG, Corneli HM. Applyning outpatient protocols in febrile infants 1-28 days of age: can the threshold be lowered? Clin Pediatr. 2000;39:81–8.

    CAS  Google Scholar 

  43. Avner JR, Baker MD. Management of fever in infants and children. Emerg Med Clin North Am. 2002;20:4967.

    Google Scholar 

  44. Baker MD, Bell LM. Unpredictability of serious bacterial illness in febrile infants from birth to 1 month of age. Arch Pediatr Adolesc Med. 1999;153(5):508–11.

    CAS  PubMed  Google Scholar 

  45. Geskey J. Neonatal fever in the term infant evaluation and management strategies. Current Pediatrics Reviews. 2008;4:N2.

    Google Scholar 

  46. Ferrera PC, Bartfield JM, Snyder HS. Neonatal fever: utility of the Rochester criteria in determining low risk for serious bacterial infections. Am J Emerg Med. 1997;15(3):299–302.

    CAS  PubMed  Google Scholar 

  47. Chiu CH, Lin TY, Bullard MJ. Identification of febrile neonates unlikely to have bacterial infections. Pediatr Infect Dis. 1997;16(1):59–63.

    CAS  Google Scholar 

  48. Levine DA, Platt SL, Dayan PS, Macias CG, et al. Multicenter RSV-SBI Study Group of the Pediatric Emergency Medicine Collaborative Research Committee of the American Academy of Pediatrics. Risk of serious bacterial infection in young febrile infants with respiratory syncytial virus infections. Pediatrics. 2004;113:1728–34.

    PubMed  Google Scholar 

  49. • Bonadio W, Huang F, Nateson S, et al. Meta-analysis to determine risk for serious bacterial infection in febrile outpatient neonates with RSV infection. Pediatr Emerg Care. 2016;32(5):286–9 This study evaluated febrile infants ≤ 28 days of age who received outpatient sepsis evaluation and nasopharyngeal aspirate antigen testing for respiratory syncytial viral (RSV) infection. Rates of SBI were not significantly different between febrile infants ≤ 28 days of age with and without RSV infection.

    PubMed  Google Scholar 

  50. Schwartz S, Raveh D, Toker O, Segal G, Godovitch N, Schlesinger Y. A week-by-week analysis of the low-risk criteria for serious bacterial infection in febrile neonates. Arch Dis Child. 2009;94(4):287–92. https://doi.org/10.1136/adc.2008.138768 Epub 2008 Oct 31.

    Article  CAS  PubMed  Google Scholar 

  51. Chancey RJ, Jhaveri R. Fever without localizing signs in children: a review in the post-Hib and postpneumococcal era. Minerva Pediatrica. 2009;61(5):489–501.

    CAS  PubMed  Google Scholar 

  52. Bruno M, Ellis A. Consenso para el uso adecuado de antibióticos en el niño menor de 36 meses con fiebre sin foco de infección evidente. Arch Argent Pediatr. 2017;115(Supl 2):S27–37.

    Google Scholar 

  53. Biondi EA, Byington CL. Evaluation and management of febrile, well-appearing young. infants. Infect Dis Clin North Am. 2015;29(3):575–85.

    PubMed  Google Scholar 

  54. Byington CL, Rittichier KK, Bassett KE, Castillo H, Glasgow TS, Daly J, et al. Serious bacterial infections in febrile infants younger than 90 days of age: the importance of ampicillin-resistant pathogens. Pediatrics. 2003;111(5 Pt 1):964–8.

    PubMed  Google Scholar 

  55. Greenhow TL, Hung YY, Herz AM, Losada E, Pantell RH. The changing epidemiology of serious bacterial infections in young infants. Pediatr Infect Dis J. 2014 Jun;33(6):595–9.

    PubMed  Google Scholar 

  56. Ruiz Contreras J, Albañil Ballesteros MR. Abordaje del niño con fiebre sin foco. Lúa Ediciones: Curso de Actualización Pediatría. Madrid; 2015.

    Google Scholar 

  57. Kuppermann N, Bank DE, Walton EA, Senac MO Jr, McCasli Kuppermann N, Bank DE, et al. Risks for bacteremia and urinary tract infections in young febrile children with bronchiolitis. Arch Pediatr Adolesc Med. 1997;151:1207–14.

    CAS  PubMed  Google Scholar 

  58. Greenes DS, Harper MB. Low risk of bacteremia in febrile children with recognizable viral syndromes. Pediatr Infect Dis J. 1999;18:258–61.

    CAS  PubMed  Google Scholar 

  59. Byington CL, Enriquez FR, Hoff C, et al. Serious bacterial infections in febrile infants 1 to 90 days old with and without viral infections. Pediatrics. 2004;113:1662–6.

    PubMed  Google Scholar 

  60. Swaminathan A, Hom J. Do febrile infants aged 60 to 90 days with bronchiolitis require a septic evaluation? Ann Emerg Med. 2012;60(5):605–6. https://doi.org/10.1016/j.annemergmed.2012.02.014 Epub 2012 Apr 19.

    Article  PubMed  Google Scholar 

  61. Dayan PS, Hanson E, Bennett JE, et al. Clinical course of urinary tract infections in infants younger than 60 days of age. Pediatr Emerg Care. 2004;20:85–8.

    PubMed  Google Scholar 

  62. Hoberman A, Wald ER, Hickey RW, et al. Oral versus initial intravenous therapy for urinary tract infections in young febrile children. Pediatrics. 1999;104:79–86.

    CAS  PubMed  Google Scholar 

  63. Schanadower D, Kuppermann N, et al. Febrile infants with urinary tract infections at very low risk for adverse events and bacteremia. Pediatrics. 2010;126(6):1072–83.

    Google Scholar 

  64. Paquette K, Cheng MP, McGillivray D, Lam C, Quach C. Is a lumbar puncture necessary when evaluating febrile infants (30 to 90 days of age) with an abnormal urinalysis? Pediatr Emerg Care. 2011;27(11):105761.

    Google Scholar 

  65. Galetto-Lacour A, Zamora SA, Andreola B, et al. Validation of a laboratory risk index score for the identifi cation of severe bacterial infection in children with fever without source. Arch Dis Child. 2010;95:968–73. https://doi.org/10.1136/adc.2009.176800.

    Article  PubMed  Google Scholar 

  66. Velasco R, Benito H, Mozún R, Trujillo J, Merino P, Mintegi S. on behalf of the Group for the Study of Febrile Infant of the RISeuP-SPERG Network.. Febrile young infants with altered urinalysis at low risk for invasive bacterial infection. A Spanish Pediatric Emergency Research Network’s Study: Pediatr Infect Dis J. 2015 Jan;34(1):17–21. https://doi.org/10.1097/INF.0000000000000482.

    Article  PubMed  Google Scholar 

  67. • Velasco R, Gómez B, Hernández-Bou S, Olaciregui I, de la Torre M, González A, et al. Validation of a predictive model for identifying febrile young infants with altered urinalysis at low risk of invasive bacterial infection. s.l. Eur J Clin Microbiol Infect Dis. 2017;36(2):281–4. https://doi.org/10.1007/s10096-016-2798-2 Retrospective multicenter study. They evaluated febrile infants younger than 3 months of age with altered urine test with low SBI risk.

    Google Scholar 

  68. Mintegi S, Gomez B, Martinez-Virumbrales L, Morientes O, Benito J. Outpatient management of selected young febrile infants without antibiotics. Arch Dis Child. 2017;102(3):244–9. https://doi.org/10.1136/archdischild-2016-310,600 Prospective study. It assessed the accuracy for low SBI risk (good appearance, infants older than 21 days of age, no leukocyturia, ANC ≤ 10,000/mm3, CRP ≤ 20 mg/L, PCT < 0.5 ng/mL, and no clinical deterioration during stay in ED (< 24 h) to decide outpatient management without LP or antibiotic treatment.

  69. Aronson PL, Wang ME, Shapiro ED, et al. Febrile Young Infant Research Collaborative. Risk stratification of febrile infants ≤60 days old without routine lumbar puncture. s.l. Pediatrics, 2018;142(6):pii: e20181879. https://doi.org/10.1542/peds.2018-1879 Case-control study. It concluded that the modified Philadelphia criteria had high sensitivity for IBI without routine LP. Infants discharged from ED without LP require close follow-up because some infants with bacteremia were classified as low-risk.

    PubMed  PubMed Central  Google Scholar 

  70. Martinez E, Mintegi S, Vilar B, et al. Prevalence and predictors of bacterial meningitis in young infants with fever without a source. Pediatr Infect Dis J. 2015;34:494–8.

    PubMed  Google Scholar 

  71. Bonsu BK, Harper MB. Identifying febrile young infants with bacteremia: is the peripheral white blood cell count an accurate screen. Ann Emerg Med. 2003;42(2):216–25.

    PubMed  Google Scholar 

  72. McCarthy PL, Sharpe MR, Spiezel SZ, et al. Observation scales to identify serious illness in febrile children. Pediatrics. 1982;70:802–9.

    CAS  PubMed  Google Scholar 

  73. Teach SJ, Fleisher GR. Efficacy of an observation scale in detecting bacteremia in febrile children three to thirsty-six months of age, treated as outpatients: Occult Bacteremia Study Group. J Pediatr. 1995;126(6):877–81.

    CAS  PubMed  Google Scholar 

  74. Wilkinson M, Bulloch B, Smith M. Prevalence of occult bacteremia in children aged 3 to 36 months presenting to the emergency department with fever in the postpneumococcal conjugate vaccine era. Acad Emerg Med. 2009;16(3):220.5.

    PubMed  Google Scholar 

  75. Shaw KN, Gorelick M, McGowan KL, et al. Prevalence of urinary tract infection in febrile young children in the emergency department. Pediatrics. 1998;102(2):16.

    Google Scholar 

  76. Gorelick MH, Shaw KN. Clinical decision rule to identify febrile young children girls at risk for urinary tract infection. Arch Pediatr Adolesc Med. 2000;154(4):386–90.

    CAS  PubMed  Google Scholar 

  77. Hoberman A, Chao HP, Keller DM, Hickey R, Davis HW, Ellis D. Prevalence of urinary tract infection in febrile infants. J Pediatr. 1993;123(1):17–23.

    CAS  PubMed  Google Scholar 

  78. Goh PL, Lee SW, Wong EH. Predictors of serious bacterial infection in children aged 3 to 36 months with fever without source. Singapore Med J. 2006;47(4):276–80.

    CAS  PubMed  Google Scholar 

  79. Torregrosa C, García RC, Sciarotta J, Vay C, Caíno S, Ellis A. Factores asociados a riesgo de infección bacteriana grave en niños bajo 24 meses de edad, internados por fiebre sin foco aparente. Rev Chil Infect. 2010;27(4):308–14.

    Google Scholar 

  80. Manzano S, Bailey B, Gervaix A, Cousineau J, Delvin E, Girodias J. Markers for bacterial infection in children with fever without source. Arch Dis Child. 2011;96:440–6.

    PubMed  Google Scholar 

  81. Shaikh N, Morone NE, Bost JE, Farrell MH. Prevalence of urinary tract infection in childhood: a meta-analysis. Pediatr Infect Dis J. 2008 Apr;27(4):302–8. https://doi.org/10.1097/INF.0b013e31815e4122.

    Article  PubMed  Google Scholar 

  82. de Nefrología C. Sociedad Argentina de Pediatría. Nuevas recomendaciones frente a las actuales controversias en infección urinaria. Arch Arg Ped. 2015;6:579–81.

    Google Scholar 

  83. Lee G, Harper M. Risk of bacteriemia for febrile young children in the post-Haemophilus influenzan type b era. Arch Pediatr Adolesc Med. 1998;152:624–8.

    CAS  PubMed  Google Scholar 

  84. Alpern ER, Alessandrini EA, Bell LM et al. Occult bacteremia from a pediatric emergency department: current prevalence, time to detection, and outcome. Pediatrics 2000;106(3):505–11. .

    CAS  PubMed  Google Scholar 

  85. Herz AM, Greenhow TL, Alcantara J, et al. Changing epidemiology of outpatient bacteremia in 3- to 36-month-old children after the introduction of the heptavalent-conjugated pneumococcal vaccine. Pediatr Infect Dis J. 2006.

  86. Waddle E, Jhaveri R. Outcomes of febrile children without localizing signs after pneumococcal conjugate vaccine. Arch Dis Child. 2009;94(2):144–7.

    CAS  PubMed  Google Scholar 

  87. Mintegi S, Benito J, Sanchez J, et al. Predictors of occult bacteremia in young febrile children in the era of heptavalent pneumococcal conjugated vaccine. Eur J Emerg Med. 2009;16(4):199–205.

    PubMed  Google Scholar 

  88. Kaplan SL, Schutze GE, Leake JA, et al. Multicenter surveillance of invasive meningococcal infections in children. Pediatrics. 2006;118(4):e979–84. 145.

    Google Scholar 

  89. Comités de Neumonología, Infectología y Medicina Interna, Sociedad Argentina de Pediatría. Recomendaciones para el manejo de las infecciones respiratorias agudas bajas en menores de 2 años. Arch Arg Ped. 2015;113(4):373–4 www.sap.org.ar/index.p.

    Google Scholar 

  90. Bradley JS, Byington CL, Shah SS, et al. The management of community-acquired pneumonia in infants and children older than 3 months of age: clinical practice guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America. Clin Infect Dis. 2011;53(7):e25–76.

    PubMed  Google Scholar 

  91. Harris M, Clark J, Coote N, et al. British Thoracic Society guidelines for the management of community acquired pneumonia in children: update 2011. Thorax. 2011;66(Suppl 2):ii1–23. 208.

    Google Scholar 

  92. •• Mahajan P, Kuppermann N, Mejias A, et al. Association of RNA biosignatures with bacterial infections in febrile infants aged 60 days or younger.. s.l. JAMA. 2016;316(8):846–57. https://doi.org/10.1001/jama.2016.9207 Prospective case-control study. They compared RNA biosignatures with routine complementary tests and Yale Observation Scale to distinguish bacterial infections in infants younger than 2 months of age.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Rino MD.

Ethics declarations

Conflict of Interest

Pedro Rino declares that he has no conflict of interest.

Eugenia Hernández declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pediatrics in South America

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rino, P., Hernández, E. The Febrile Infant. Curr Treat Options Peds 5, 431–447 (2019). https://doi.org/10.1007/s40746-019-00184-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40746-019-00184-1

Keywords

Navigation